10,922 research outputs found

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target

    2011 Strategic roadmap for Australian research infrastructure

    Get PDF
    The 2011 Roadmap articulates the priority research infrastructure areas of a national scale (capability areas) to further develop Australia’s research capacity and improve innovation and research outcomes over the next five to ten years. The capability areas have been identified through considered analysis of input provided by stakeholders, in conjunction with specialist advice from Expert Working Groups   It is intended the Strategic Framework will provide a high-level policy framework, which will include principles to guide the development of policy advice and the design of programs related to the funding of research infrastructure by the Australian Government. Roadmapping has been identified in the Strategic Framework Discussion Paper as the most appropriate prioritisation mechanism for national, collaborative research infrastructure. The strategic identification of Capability areas through a consultative roadmapping process was also validated in the report of the 2010 NCRIS Evaluation. The 2011 Roadmap is primarily concerned with medium to large-scale research infrastructure. However, any landmark infrastructure (typically involving an investment in excess of $100 million over five years from the Australian Government) requirements identified in this process will be noted. NRIC has also developed a ‘Process to identify and prioritise Australian Government landmark research infrastructure investments’ which is currently under consideration by the government as part of broader deliberations relating to research infrastructure. NRIC will have strategic oversight of the development of the 2011 Roadmap as part of its overall policy view of research infrastructure

    A service oriented architecture to implement clinical guidelines for evidence-based medical practice

    Get PDF
    Health information technology (HIT) has been identified as the fundamental driver to streamline the healthcare delivery processes to improve care quality and reduce operational costs. Of the many facets of HIT is Clinical Decision Support (CDS) which provides the physician with patient-specific inferences, intelligently filtered and organized, at appropriate times. This research has been conducted to develop an agile solution to Clinical Decision Support at the point of care in a healthcare setting as a potential solution to the challenges of interoperability and the complexity of possible solutions. The capabilities of Business Process Management (BPM) and Workflow Management systems are leveraged to support a Service Oriented Architecture development approach for ensuring evidence based medical practice. The aim of this study is to present an architecture solution that is based on SOA principles and embeds clinical guidelines within a healthcare setting. Since the solution is designed to implement real life healthcare scenarios, it essentially supports evidence-based clinical guidelines that are liable to change over a period of time. The thesis is divided into four parts. The first part consists of an Introduction to the study and a background to existing approaches for development and integration of Clinical Decision Support Systems. The second part focuses on the development of a Clinical Decision Support Framework based on Service Oriented Architecture. The CDS Framework is composed of standards based open source technologies including JBoss SwitchYard (enterprise service bus), rule-based CDS enabled by JBoss Drools, process modelling using Business Process Modelling and Notation. To ensure interoperability among various components, healthcare standards by HL7 and OMG are implemented. The third part provides implementation of this CDS Framework in healthcare scenarios. Two scenarios are concerned with the medical practice for diagnosis and early intervention (Chronic Obstructive Pulmonary Disease and Lung Cancer), one case study for Genetic data enablement of CDS systems (New born screening for Cystic Fibrosis) and the last case study is about using BPM techniques for managing healthcare organizational perspectives including human interaction with automated clinical workflows. The last part concludes the research with contributions in design and architecture of CDS systems. This thesis has primarily adopted the Design Science Research Methodology for Information Systems. Additionally, Business Process Management Life Cycle, Agile Business Rules Development methodology and Pattern-Based Cycle for E-Workflow Design for individual case studies are used. Using evidence-based clinical guidelines published by UK’s National Institute of Health and Care Excellence, the integration of latest research in clinical practice has been employed in the automated workflows. The case studies implemented using the CDS Framework are evaluated against implementation requirements, conformance to SOA principles and response time using load testing strategy. For a healthcare organization to achieve its strategic goals in administrative and clinical practice, this research has provided a standards based integration solution in the field of clinical decision support. A SOA based CDS can serve as a potential solution to complexities in IT interventions as the core data and business logic functions are loosely coupled from the presentation. Additionally, the results of this this research can serve as an exemplar for other industrial domains requiring rapid response to evolving business processes

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    The Use of Firewalls in an Academic Environment

    No full text

    Operationalizing Lewin’s 3-Step Change Model in the Outpatient Setting: A COVID-19 Case Study

    Get PDF
    The COVID-19 pandemic has disrupted the healthcare industry and forced organizations to fundamentally change their operations to ensure the highest level of safety for both patients and staff alike. The purpose of this study is to analyze the rapid response change process to COVID-19 in an outpatient setting and provide current and future healthcare leaders and organizations elements for consideration in redesigning healthcare delivery during a pandemic. Through a series of semi-structured interviews with Independent American Health Clinic employees, coupled with a thematic analysis, three main themes emerged the organization’s response: environment of care, healthcare operations, and organizational infrastructure. These themes were placed into a framework consisting of Lewin’s 3-Step Change model (unfreezing, moving, and refreezing) to retrospectively analyze an organization’s change efforts in response to COVID-19. The analysis highlighted a nine month period that started just prior to the pandemic declaration and aligned with the early trend of increasing cases and transmission levels. The analysis also outlined distinct challenges presented to the change efforts set by the existing culture of the organization. Additional information provided by participants during the interview process offered supplementary areas for discussion to include pandemic planning and training, the importance of staff resiliency, and the need to continuously monitor and improve business operations. The results showed that while there are many similarities to the conditions for which healthcare organizations needed to respond, the change efforts are unique to each organization
    • 

    corecore