1,883 research outputs found

    Signal detection for non-orthogonal space-time block coding over time-selective fading channels

    Get PDF
    In the case of non-quasi-static (i.e., time-selective fast fading) channels, which do exist in practice, the performance of the existing NO-STBC detectors can suffer from an irreducible error floor. To this end, this letter proposes a zero-forcing-based signal detector, which is not only computationally simple but also highly effective in mitigating the impact of channel variation on system performance

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs
    • …
    corecore