1,017 research outputs found

    A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids

    Get PDF
    In this paper a novel distributed control algorithm for current sharing and voltage regulation in Direct Current (DC) microgrids is proposed. The DC microgrid is composed of several Distributed Generation units (DGUs), including Buck converters and current loads. The considered model permits an arbitrary network topology and is affected by unknown load demand and modelling uncertainties. The proposed control strategy exploits a communication network to achieve proportional current sharing using a consensus-like algorithm. Voltage regulation is achieved by constraining the system to a suitable manifold. Two robust control strategies of Sliding Mode (SM) type are developed to reach the desired manifold in a finite time. The proposed control scheme is formally analyzed, proving the achievement of proportional current sharing, while guaranteeing that the weighted average voltage of the microgrid is identical to the weighted average of the voltage references.Comment: 12 page

    Plug-and-play and coordinated control for bus-connected AC islanded microgrids

    Full text link
    This paper presents a distributed control architecture for voltage and frequency stabilization in AC islanded microgrids. In the primary control layer, each generation unit is equipped with a local controller acting on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex optimization. The update of the voltage-control layer, when units plug -in/-out, is therefore automatized and stability of the microgrid is always preserved. Moreover, local control design is based only on the knowledge of parameters of power lines and it does not require to store a global microgrid model. In this work, we focus on bus-connected microgrid topologies and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with balanced, unbalanced and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can be resized over time

    Distributed Apportioning in a Power Network for providing Demand Response Services

    Full text link
    Greater penetration of Distributed Energy Resources (DERs) in power networks requires coordination strategies that allow for self-adjustment of contributions in a network of DERs, owing to variability in generation and demand. In this article, a distributed scheme is proposed that enables a DER in a network to arrive at viable power reference commands that satisfies the DERs local constraints on its generation and loads it has to service, while, the aggregated behavior of multiple DERs in the network and their respective loads meet the ancillary services demanded by the grid. The Net-load Management system for a single unit is referred to as the Local Inverter System (LIS) in this article . A distinguishing feature of the proposed consensus based solution is the distributed finite time termination of the algorithm that allows each LIS unit in the network to determine power reference commands in the presence of communication delays in a distributed manner. The proposed scheme allows prioritization of Renewable Energy Sources (RES) in the network and also enables auto-adjustment of contributions from LIS units with lower priority resources (non-RES). The methods are validated using hardware-in-the-loop simulations with Raspberry PI devices as distributed control units, implementing the proposed distributed algorithm and responsible for determining and dispatching realtime power reference commands to simulated power electronics interface emulating LIS units for demand response.Comment: 7 pages, 11 Figures, IEEE International Conference on Smart Grid Communication

    Distributed Control Strategies for Microgrids: An Overview

    Get PDF
    There is an increasing interest and research effort focused on the analysis, design and implementation of distributed control systems for AC, DC and hybrid AC/DC microgrids. It is claimed that distributed controllers have several advantages over centralised control schemes, e.g., improved reliability, flexibility, controllability, black start operation, robustness to failure in the communication links, etc. In this work, an overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented. Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed in this paper. Distributed cooperative algorithms for primary and secondary control systems, including (among others issues) virtual impedance, synthetic inertia, droop-free control, stability analysis, imbalance sharing, total harmonic distortion regulation, are also reviewed and discussed in this survey. Tertiary control systems, e.g., for economic dispatch of electric energy, based on cooperative control approaches, are also addressed in this work. This review also highlights existing issues, research challenges and future trends in distributed cooperative control of microgrids and their future applications

    Multi-Functional Distributed Secondary Control for Autonomous Microgrids

    Get PDF

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part

    Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    Get PDF
    • …
    corecore