295 research outputs found

    Cell nuclei detection using globally optimal active contours with shape prior

    Get PDF
    Cell nuclei detection in fluorescent microscopic images is an important and time consuming task for a wide range of biological applications. Blur, clutter, bleed through and partial occlusion of nuclei make this a challenging task for automated detection of individual nuclei using image analysis. This paper proposes a novel and robust detection method based on the active contour framework. The method exploits prior knowledge of the nucleus shape in order to better detect individual nuclei. The method is formulated as the optimization of a convex energy function. The proposed method shows accurate detection results even for clusters of nuclei where state of the art methods fail

    Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    Get PDF
    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98

    Tracking of Fluorescent Cells Based on the Wavelet Otsu Model

    Get PDF
    The mainstay of the project is to demonstrate that the proposed tracking scheme is more accurate and significantly faster than the other state-of-the-art tracking by model evolution approaches.The model is validated by comparing it to the original algorithm.The proposed tracking scheme involves two steps. First, coherence-enhancing diffusion filtering is applied on each frame to reduce the amount of noise and enhance flow-like structures. Second, the image segmentation is done by the Wavelet OTSU method in the fast level set-like and graph cut frameworks. This model evolution approach has also been extended to deal with many cells concurrently. The potential of the proposed tracking scheme and the advantages and disadvantages of both frameworks are demonstrated on 2-D and 3-D time-lapse series of mouse carcinoma cells

    An objective comparison of cell-tracking algorithms

    Get PDF
    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge

    A convolutional neural network for segmentation of yeast cells without manual training annotations

    Get PDF
    MOTIVATION: Single-cell time-lapse microscopy is a ubiquitous tool for studying the dynamics of complex cellular processes. While imaging can be automated to generate very large volumes of data, the processing of the resulting movies to extract high-quality single-cell information remains a challenging task. The development of software tools that automatically identify and track cells is essential for realizing the full potential of time-lapse microscopy data. Convolutional neural networks (CNNs) are ideally suited for such applications, but require great amounts of manually annotated data for training, a time-consuming and tedious process. RESULTS: We developed a new approach to CNN training for yeast cell segmentation based on synthetic data and present (i) a software tool for the generation of synthetic images mimicking brightfield images of budding yeast cells and (ii) a convolutional neural network (Mask R-CNN) for yeast segmentation that was trained on a fully synthetic dataset. The Mask R-CNN performed excellently on segmenting actual microscopy images of budding yeast cells, and a density-based spatial clustering algorithm (DBSCAN) was able to track the detected cells across the frames of microscopy movies. Our synthetic data creation tool completely bypassed the laborious generation of manually annotated training datasets, and can be easily adjusted to produce images with many different features. The incorporation of synthetic data creation into the development pipeline of CNN-based tools for budding yeast microscopy is a critical step toward the generation of more powerful, widely applicable and user-friendly image processing tools for this microorganism. AVAILABILITY AND IMPLEMENTATION: The synthetic data generation code can be found at https://github.com/prhbrt/synthetic-yeast-cells. The Mask R-CNN as well as the tuning and benchmarking scripts can be found at https://github.com/ymzayek/yeastcells-detection-maskrcnn. We also provide Google Colab scripts that reproduce all the results of this work. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Adaptive Re-Segmentation Strategies for Accurate Bright Field Cell Tracking

    Get PDF
    Understanding complex interactions in cellular systems requires accurate tracking of individual cells observed in microscopic image sequence and acquired from multi-day in vitro experiments. To be effective, methods must follow each cell through the whole experimental sequence to recognize significant phenotypic transitions, such as mitosis, chemotaxis, apoptosis, and cell/cell interactions, and to detect the effect of cell treatments. However, high accuracy long-range cell tracking is difficult because the collection and detection of cells in images is error-prone, and single error in a one frame can cause a tracked cell to be lost. Detection of cells is especially difficult when using bright field microscopy images wherein the contrast difference between the cells and the background is very low. This work introduces a new method that automatically identifies and then corrects tracking errors using a combination of combinatorial registration, flow constraints, and image segmentation repair

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    The living microarray: a high-throughput platform for measuring transcription dynamics in single cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods of measuring transcription in high-throughput have led to significant improvements in our knowledge of transcriptional regulation and Systems Biology. However, endpoint measurements obtained from methods that pool populations of cells are not amenable to studying time-dependent processes that show cell heterogeneity.</p> <p>Results</p> <p>Here we describe a high-throughput platform for measuring transcriptional changes in real time in single mammalian cells. By using reverse transfection microarrays we are able to transfect fluorescent reporter plasmids into 600 independent clusters of cells plated on a single microscope slide and image these clusters every 20 minutes. We use a fast-maturing, destabilized and nuclear-localized reporter that is suitable for automated segmentation to accurately measure promoter activity in single cells. We tested this platform with synthetic drug-inducible promoters that showed robust induction over 24 hours. Automated segmentation and tracking of over 11 million cell images during this period revealed that cells display substantial heterogeneity in their responses to the applied treatment, including a large proportion of transfected cells that do not respond at all.</p> <p>Conclusions</p> <p>The results from our single-cell analysis suggest that methods that measure average cellular responses, such as DNA microarrays, RT-PCR and chromatin immunoprecipitation, characterize a response skewed by a subset of cells in the population. Our method is scalable and readily adaptable to studying complex systems, including cell proliferation, differentiation and apoptosis.</p
    corecore