1,262 research outputs found

    Общетеоретическое решение задачи наблюдения вектора потокосцепления ротора асинхронного двигателя с использованием скользящих режимов

    Get PDF
    Предложен метод синтеза семейства наблюдателей потокосцепления ротора асинхронного двигателя со скользящим режимом, который основывается на втором методе Ляпунова и методе эквивалентного управления.Запропоновано метод синтезу сімейства спостерігачів потокозчеплення ротора асинхронного двигуна з ковзним режимом, який основується на другому методі Ляпунова та методі еквівалентного керування.n approach to the synthesis of family of sliding mode observers of induction motor rotor flux based on Lyapunov’s second method and the equivalent control method is proposed

    Generalized Parameter Estimation-based Observers: Application to Power Systems and Chemical-Biological Reactors

    Full text link
    In this paper we propose a new state observer design technique for nonlinear systems. It consists of an extension of the recently introduced parameter estimation-based observer, which is applicable for systems verifying a particular algebraic constraint. In contrast to the previous observer, the new one avoids the need of implementing an open loop integration that may stymie its practical application. We give two versions of this observer, one that ensures asymptotic convergence and the second one that achieves convergence in finite time. In both cases, the required excitation conditions are strictly weaker than the classical persistent of excitation assumption. It is shown that the proposed technique is applicable to the practically important examples of multimachine power systems and chemical-biological reactors.Comment: 13 pages, 8 figure

    Modeling and Control of Reluctance Actuators

    Get PDF
    Los actuadores de reluctancia son dispositivos que se caracterizan por una elevada densidad de fuerza, buena eficiencia, gran tolerancia frente a fallos y un coste reducido. Estas características hacen que estén siendo considerados como una alternativa muy prometedora frente a otro tipo de actuadores electromagnéticos en ciertas aplicaciones que requieren gran velocidad y precisión. Por otro lado, los actuadores de reluctancia también son la solución ideal para algunos dispositivos electromecánicos que requieren unas prestaciones modestas, lo cual es debido principalmente a que son compactos, tienen un bajo coste y consumen relativamente poco. En concreto, los relés electromecánicos y las válvulas de solenoide son dispositivos cuya operación está basada en la fuerza creada por un pequeño actuador de reluctancia.A pesar de sus ventajas, los actuadores de reluctancia son sistemas complejos cuya dinámica es no lineal. Una de sus características más distintivas es que la fuerza magnética que provoca el movimiento es siempre de atracción y, además, depende fuertemente de la posición de la armadura. Básicamente, el comportamiento de esta fuerza es lo que explica que dispositivos como los relés y las electroválvulas sufran fuertes impactos y desgaste cada vez que son activados. Adicionalmente, algunos fenómenos electromagnéticos como la histéresis magnética o las corrientes inducidas hacen que el modelado dinámico de los actuadores de reluctancia sea bastante complejo. El trabajo realizado en esta tesis doctoral está enfocado en estudiar las posibilidades que ofrecen estos actuadores y, en concreto, en analizar el comportamiento dinámico y proponer algoritmos de estimación y control para relés electromecánicos y válvulas de solenoide.El primer objetivo de la investigación es el desarrollo de modelos dinámicos para actuadores de reluctancia, es decir, modelos de orden reducido que puedan ser utilizados para realizar simulaciones transitorias lo más precisas posibles con un bajo coste computacional. Para ello, lo primero que se ha estudiado es el comportamiento electromagnético de estos sistemas. El método de modelado más usado en la tesis es el de los circuitos magnéticos equivalentes (MEC, por sus siglas en inglés). No obstante, también se han realizado algunas simulaciones con modelos de elementos _nitos, en concreto para validar las aproximaciones del método MEC o para calcular la reluctancia del entrehierro. Se han estudiado los principales fenómenos electromagnéticos que aparecen en los actuadores de reluctancia, lo que ha llevado a la obtención de expresiones analíticas para modelar la dispersión de flujo, las corrientes inducidas y la saturación e histéresis magnéticas. Por otra parte, la expresión de la fuerza magnética que produce el movimiento se ha obtenido mediante un balance energético del sistema.El movimiento de la armadura también se ha estudiado en la tesis. Dado que los actuadores de reluctancia tienen generalmente un recorrido físicamente acotado, se han propuesto dos técnicas diferentes que permiten modelar los límites del movimiento y los rebotes de la armadura. Una vez estudiado el movimiento, el modelo mecánico se ha combinado con las ecuaciones electromagnéticas para poder analizar el comportamiento dinámico del actuador en su conjunto. Se han desarrollado cinco modelos dinámicos distintos, desde el más sencillo posible hasta uno que incluye todos los fenómenos electromagnéticos citados con anterioridad, y posteriormente se han comparado teniendo en cuenta su precisión y coste computacional.Las medidas experimentales son fundamentales a la hora de analizar y caracterizar cualquier sistema dinámico. Por ello, otro de los objetivos de la tesis ha sido la evaluación de distintas técnicas de medida que pudieran ayudar a mejorar la comprensión sobre el comportamiento dinámico de los actuadores de reluctancia y, en caso de que fuera posible, formar parte de un bucle de control realimentado. En este sentido, se ha intentado grabar el movimiento de uno de los dispositivos estudiados mediante tres instrumentos ópticos distintos. Los resultados indican que, a pesar de que en ciertas situaciones sí sería posible medir la trayectoria del dispositivo durante su movimiento, ninguno de los instrumentos podría aplicarse en la práctica por su baja flexibilidad y alto coste. Por este motivo, también se ha explorado el uso de otras variables que puedan ser medidas mucho más fácilmente.Otra parte importante de la investigación ha estado centrada en técnicas de estimación. Se han desarrollado dos algoritmos que son capaces de estimar, en tiempo real, el flujo magnético, la resistencia y la inductancia de un actuador dado. Los algoritmos utilizan únicamente medidas de tensión y corriente, lo cual representa una clara ventaja ya que no se necesita utilizar sensores o equipamiento añadido. Las prestaciones de ambos estimadores han sido analizadas mediante simulación y experimentos reales. El problema de estimar la posición de la armadura también se ha abordado en la tesis. En concreto, se ha prestado especial atención en resaltar los efectos que la histéresis magnética produce en la estimación, algo que no había sido estudiado con anterioridad.Finalmente, se han propuesto distintas técnicas de control para actuadores de reluctancia. En concreto, el objetivo principal es lograr que estos sigan un movimiento con aterrizaje suave, es decir, un movimiento que no dé lugar a impactos o rebotes. Como un primer paso, se han estudiado las propiedades básicas de los sistemas de control, es decir, la estabilidad, controlabilidad y observabilidad. Después se ha explorado la técnica de linealización por realimentación como un posible método para diseñar un bucle de control realimentado para la trayectoria de la armadura. Los resultados obtenidos demuestran que el control por realimentación es capaz de controlar el movimiento con gran precisión, siempre y cuando haya disponibles medidas o estimaciones precisas de la posición en tiempo real. Como esta situación es difícil que se dé en la práctica, se ha estudiado el uso de técnicas de control óptimo en bucle abierto para aquellos casos en los que la posición de la armadura no se pueda obtener. En particular, se han obtenido distintas soluciones tiempo óptimo y de energía óptima para un actuador nominal y, posteriormente, se ha analizado su robustez utilizando un método de Montecarlo.Como alternativa a los métodos clásicos, se ha estudiado la aplicabilidad de los métodos Run-to-Run (R2R) en actuadores de relutancia. Estas técnicas están diseñadas específicamente para sistemas que realizan un proceso repetitivo y, por lo tanto, son idóneas para dispositivos como los relés y las válvulas. En concreto, los métodos R2R implícitos se basan en la idea de construir una función que evalúe el desempeño del sistema al final de cada repetición. De esta forma, es posible mejorar el comportamiento dinámico del actuador a lo largo de las repeticiones utilizando un algoritmo de búsqueda.Las posibilidades para diseñar un controlador R2R son prácticamente infinitas, así que en la tesis se dan consejos prácticos sobre cómo elegir y parametrizar la señal de entrada, cómo usar las medidas disponibles para evaluar el comportamiento del sistema o cómo comparar distintos algoritmos de búsqueda. Los experimentos realizados demuestran que el algoritmo R2R diseñado es capaz de mejorar enormemente el comportamiento de un relé electromecánico y que, después de unos pocos ciclos, ,los resultados son incluso mejores que con cualquier estrategia presente en la literatura.Reluctance actuators are characterized by having a high force density, good efficiency, high fault tolerance and reduced cost. These features make them a promising alternative to other electromagnetic actuators for high-speed and high-precision applications. In addition, reluctance actuators are also ideal for small switch-type devices that require a modest performance because of their compactness, low cost, reduced mass and low energy dissipation. In particular, electromechanical switches and solenoid valves are devices whose operation is based on the force created by a small reluctance actuator. Despite their advantages, reluctance actuators are systems with highly nonlinear dynamics. One of their most distinctive features is that the magnetic force that produces the motion is always attractive and varies greatly with the position of the armature. In essence, the nature of this force explains why switch-type devices like relays and valves are subject to strong impacts and wear each time they are operated. In addition to that, electromagnetic phenomena such as magnetic hysteresis and eddy currents make the dynamic modeling of reluctance actuators even more difficult. The work of this thesis aims to investigate the capabilities of reluctance actuators and, in particular, to analyze the dynamic behavior and propose estimation and control algorithms for electromechanical switches and solenoid valves. The first objective of the investigation is the development of control-oriented dynamical models for reluctance actuators, i.e., low-order models that can be used to perform accurate transient simulations with low computational requirements. For that, the electromagnetic behavior of these systems is firstly studied. The magnetic equivalent circuit (MEC) methodology is selected as the primary modeling technique. Simulations from finite element models are also used for some specific purposes, e.g., to verify the assumptions of the MEC approach or to calculate the reluctance of the air gap. Then, the main electromagnetic phenomena that occur in reluctance actuators are studied. Analytic expressions are derived to model magnetic saturation, hysteresis, flux fringing and eddy currents, and an energy balance is used to obtain the expression for the magnetic force that produces the motion. After that, the motion of the armature is incorporated to the analysis. Given that reluctance actuators usually have a limited range of motion, two different techniques are proposed to model the limits of the armature stroke and the bouncing phenomenon. Then, the electromagnetic equations and the mechanical models are combined to describe the overall dynamic behavior of the actuator. Five different dynamical models are presented, ranging from a computationally inexpensive structure to a comprehensive model that includes saturation, hysteresis, eddy currents and flux fringing. The models are compared in terms of accuracy and computational requirements. Measurements play an important role in the analysis and characterization of dynamical systems. Thus, another objective of this thesis is the evaluation of different measurement methodologies that may improve the understanding of the dynamic behavior of reluctance actuators and, if possible, be used as part of a feedback controller. In this regard, three optical instruments are explored in order to record the motion of switch-type actuators. The results show that, even though in some cases it is possible to measure the position of several components of the device, none of the instruments could be applied in a practical situation due to their low flexibility and high cost. For that reason, other variables that are much more easily obtainable are also explored. Another significant part of the research is devoted to estimation in reluctance actuators. Two different algorithms are proposed to estimate the magnetic flux, the resistance and the inductance of the device, both of which can be implemented in real time. The algorithms rely only on measurements of the coil voltage and current, which represents a clear advantage because no additional hardware is required. Simulation and experiments are presented to show the performance of the estimators. Furthermore, the estimation of the armature position is also investigated in this work. In particular, special focus is put on highlighting the effects of magnetic hysteresis on the performance of different estimation approaches. Control strategies are then proposed to achieve soft landing in reluctance actuators, i.e., a controlled motion without impacts or bounces. As a first step, the basic properties of control systems theory---stability, controllability and stability---are investigated for a nominal actuator. Then, feedback linearization is explored as a method to design a trajectory tracking controller for the armature position. The obtained results show that soft landing can be accomplished by means of feedback control provided that accurate measurements or estimates of the position are available. Since this situation is rare in practice, open-loop optimal control is proposed as an alternative technique when the position is not accessible. Different time-optimal and energy-optimal solutions are derived for a nominal actuator and then compared in terms of robustness using a Monte Carlo analysis. Finally, Run-to-Run (R2R) control is explored as another method that may be used to improve the performance of reluctance actuators. These techniques are specifically designed for systems that perform a repetitive operation and, hence, they are very well suited to being applied to switch-type devices. In particular, implicit R2R methods are based on the idea of building a function that evaluates the performance of the system at the end of each repetition. In this way, the dynamic behavior of the actuator can be gradually improved along the repetitions by conducting a black-box search. Considering that the possibilities to design a R2R controller are almost endless, practical advice is given on how to select and parameterize the input profile, how to use measurements to evaluate the system performance and how to compare different search algorithms. The performed experiments show that the designed R2R controller is able to improve greatly the behavior of a switch-type device and that, after a few cycles, it outperforms other methodologies in the literature.<br /

    Design and Dynamic Control of Heteropolar Inductor Machines

    Get PDF

    Passivity Based Control for Permanent-Magnet Synchronous Motors

    Get PDF

    Fundamentals of vector-controlled alternative current electromechanical systems with rolling pair kinematics

    Get PDF
    Розроблено узагальнені математичні моделі класу транспортних об'єктів з кінематичною парою кочення, що приводяться в рух векторно-керованими двигунами змінного струму. Розроблено нову концепцію керування координатами електромеханічних об'єктів з кінематичною парою кочення, що базується на основі декомпозиційного підходу і може бути загальнотеоретичною основою для розробки методів синтезу, які забезпечують вирішення основних задач керування тяговим моментом та вектором потокозчеплення, а також координатами транспортного об'єкта. Розроблено методи робастного та адаптивного векторного керування координатами приводних двигунів, які дозволяють вирішити проблему погіршення показників якості керування та енергетичної ефективності процесу електромеханічного перетворення енергії в умовах дії параметричних збурень. Розроблено методи енергоефективного керування моментом тягових двигунів змінного струму за рахунок впливу на модуль вектора потокозчеплення для досягнення максимізації співвідношення момент-струм та реалізації енергозаощаджуючої функції "stop and go". Розвинуто теорію генерування електричної енергії в автономних системах з асинхронними генераторами, які мають ємнісне збудження. Узагальнений теоретичний підхід дозволяє в уніфікованих системах векторного керування транспортних електромеханічних об’єктів забезпечити формування наперед заданих динамічних характеристик транспортних засобів; високу комфортність руху транспортних засобів; підвищення енергетичної ефективності в тягових та гальмівних режимах до 30 % у порівнянні з існуючими системами з параметричним керуванням, та до 10 % у порівнянні з існуючими транспортними системами на основі частотного керування; зниження втрат активної потужності до 20% від номінального рівня в умовах малих навантажень; економію електричної енергії на рівні 5 – 10 % за рахунок реалізації енергозаощаджуючої функції «stop and go»; рух із максимальним тяговим зусиллям та запобігання виникнення режимів втрати зчеплення. В електромеханічних системах з асинхронними генераторами з самозбудженням забезпечується підвищення стійкості робочих режимів в умовах параметричних збурень.The generalized mathematical models for the class of transport objects with vectorcontrolled AC motors are developed. A novel decomposition based control concept for electromechanical systems with rolling pair kinematic is presented. Control algorithms development procedure based on this concept provides a solution for the basic traction control tasks. Proposed robust and adaptive control algorithms of the induction motors guarantees high performance torque-flux tracking and high energy efficiency under variation of the most critical induction motor parameters (rotor and stator resistances). Energy efficient control with maximum torque per Ampere optimization is synthesized in order to implement energy saving function "stop and go". The theory of energy generation using autonomous induction generators with capacitive excitation is developed. Generalized theoretical approach allows designing vector controlled electromechanical systems for electric vehicles with following properties: vehicles dynamical properties can be assigned on the design stage; high comfort level of vehicle movement; improved energy efficiency during acceleration and braking (up to 30% in comparison with conventional parametric control and up to 10 % in comparison with traditional voltage-frequency control); reduced active power loss during low load operation (up to 20 %); saving up to 5 – 10% of electrical energy due to “stop and go” function realization; movement with maximum traction and prevention of slip. For the systems with induction generators improved stability properties under parameter variation is achieved.Разработаны обобщенные математические модели класса транспортных объектов с кинематической парой качения, которые приводятся в движение векторно-управляемыми двигателями переменного тока. Разработана новая концепция управления координатами электромеханических объектов с кинематической парой качения, которая базируется на основе декомпозиционного подхода и может быть общетеоретической основой для разработки методов синтеза, обеспечивающих решение основных задач управления тяговым моментом и вектором потокосцепления, а также координатами транспортного объекта. Разработаны методы робастного и адаптивного векторного управления координатами приводных двигателей, которые позволяют решить проблему ухудшения показателей качества управления и энергетической эффективности процесса электромеханического преобразования энергии в условиях действия параметрических возмущений. Разработаны методы энергоэффективного управления моментом тяговых двигателей переменного тока за счет воздействия на модуль вектора потокосцепления для достижения максимизации соотношения момент-ток и реализации энергосберегающей функции "stop and go". Развита теория генерации электрической энергии в автономных системах с асинхронными генераторами, которые имеют емкостное возбуждение. Обобщенный теоретический подход позволяет в унифицированных системах векторного управления транспортных электромеханических объектов обеспечить: формирование наперед заданных динамических характеристик транспортных средств; высокую комфортность движения транспортных средств; повышение энергетической эффективности в тяговых и тормозных режимах до 30 % в сравнении с существующими системами з параметрическим управлением, и до 10 % в сравнении с системами на основе частотного управления; снижение потерь активной мощности до 20% от номинального уровня в условиях малых нагрузок; экономию электрической энергии на уровне 5 – 10 % за сет реализации энергосберегающей функции «stop and go»; движение с максимальным тяговым усилием и предотвращение возникновения режимов потери сцепления. В электромеханических системах з асинхронными генераторами с самовозбуждением обеспечивается повышение устойчивости рабочих режимов в условиях параметрических возмущений
    corecore