186 research outputs found

    Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications

    Get PDF
    This article contains a review of essential control techniques for maximum power point tracking (MPPT) to be applied in photovoltaic (PV) panel systems. These devices are distinguished by their capability to transform solar energy into electricity without emissions. Nevertheless, the efficiency can be enhanced provided that a suitable MPPT algorithm is well designed to obtain the maximum performance. From the analyzed MPPT algorithms, four different types were chosen for an experimental evaluation over a commercial PV system linked to a boost converter. As the reference that corresponds to the maximum power is depended on the irradiation and temperature, an artificial neural network (ANN) was used as a reference generator where a high accuracy was achieved based on real data. This was used as a tool for the implementation of sliding mode controller (SMC), fuzzy logic controller (FLC) and model predictive control (MPC). The outcomes allowed different conclusions where each controller has different advantages and disadvantages depending on the various factors related to hardware and software.This research was funded by the Basque Government through the project EKOHEGAZ (ELKARTEK KK-2021/00092), by the Diputación Foral de Álava (DFA), through the project CONAVANTER, and by the UPV/EHU, through the project GIU20/063

    A Novel MPPT Technique based on Hybrid Radial Movement Optimization with Teaching Learning Based Optimization for PV system

    Get PDF
    Because of its pure and plentiful accessibility, solar power is a remarkable resource of energy for the generation of electrical power. The solar photovoltaic mechanism transforms sunlight striking the photovoltaic solar panel or array of photovoltaic panels directly into non-linear DC power. Due to the nonlinear characteristics of solar photovoltaic panels, power must be tracked for their effective usage. When the photovoltaic arrays are shaded, the problem of nonlinearity becomes more pronounced, resulting in large power loss and intensive heating in a few areas of the photovoltaic arrangement. The tracking challenge is made more difficult by the fact that bypass diodes, which are used to completely eradicate the shading effect, generate numerous power peak levels on the power vs. voltage (P-V) curve. Traditional methods for tracing the global peak point are unable to examine the entire P-V curve as they frequently get stuck at the local peak point. Recently, machine learning or optimization algorithms have been used to determine the global peak point. Because these algorithms are random, they search the entire search area, reducing the possibility of being caught in the local maximum value. This article proposes a hybrid of two optimization approaches: radial movement optimization and teaching-learning optimization (HRMOTLBO). The proposed MPPT method was thoroughly investigated and tested in a wide range of photovoltaic partial shading combinations. The recommended HRMOTLBO MPPT approach outperforms and is more reliable than a recent Jaya-based MPPT approach in terms of tracing time and power variation under dynamic and static partial shading conditions. Experimental as well as simulation outcomes demonstrate that the proposed MPPT successfully traces the global peak point in less time and with fewer fluctuations during various partial shading conditions

    Robust Modified Flower Pollination Algorithm for Power Quality Enhancement in an Autonomous 31-Level Cascaded H-Bridge Photovoltaic Inverter with Partial Shading Conditions

    Get PDF
    The effect of global warming and the scarcity of fossil fuels has created an enormous problem in today’s era. To overcome such a problem, renewable energy sources, particularly solar energy, play a crucial role in meeting the developing need for power. However, the design of the Solar Photovoltaic (PV) system is interrupted by various factors such as the effect of temperature, isolation, aging, partial shading conditions, etc. Among all the factors mentioned, partial shading results in the significant diminution of power. To address this shading effect and enhance the flexibility of the PV system in terms of better utilization and energy extraction, a 31-Level Cascaded H-Bridge Multilevel Inverter (CHB-MLI) has been implemented to the autonomous PV system comprising of Maximum Power Point Tracking (MPPT) controller, boost converter and variable loads in MATLAB/Simulink architecture. To track maximum power from PV during varying irradiance and temperature and to further improve the system performance in terms of better convergence speed, an MPPT system with a Modified Flower Pollination Algorithm (MFPA) based PID controller has been proposed in this paper. To justify the suggested approach, the is-landed PV system is led to variation in irradiance and load. A detailed comparison of the proposed MFPA technique with classical control techniques has been meticulously discussed. The results obtained indicate that the suggested MFPA tuned PID with MLI outperforms the conventional methods in better system stability, reduced harmonics, and enhanced capacity to track maximum power from the PV system. In addition to this, the Total Harmonic Distortion (THD) using Fast Fourier Transform (FFT) has been found to verify IEEE-1547 power quality constraints. The values are found to be well within limits, thus justifying its real-time applications

    An ANFIS-PI based boost converter control scheme

    Get PDF
    The PI algorithm has proven to be a popular and widely used control method, due to its relative simplicity and robustness. Despite this, the linear nature of the algorithm means it doesn't provide optimal control to non-linear systems. This paper presents a novel method of improving the performance of the PI controller using an ANFIS network to provide gain scheduling. This control scheme is applied to a Boost Converter circuit and simulated within the PSIM modelling environment. The simulation results indicate that using the ANFIS controller provides a fast system response with minimal errors even under dynamic operating conditions. The ANFIS controller is also shown to simplify the design flow in comparison to the popular Fuzzy-PI gain scheduling method

    An FPGA Kalman-MPPT implementation adapted in SST-based dual active bridge converters for DC microgrids systems

    Get PDF
    The design of digital hardware controllers for the integration of renewable energy sources in DC microgrids is a research topic of interest. In this paper, a Kalman filter-based maximum power point tracking algorithm is implemented in an FPGA and adapted in a dual active bridge (DAB) converter topology for DC microgrids. This approach uses the Hardware/Software (HW/SW) co-design paradigm in combination with a pipelined piecewise polynomial approximation design of the Kalman-maximum power point tracking (MPPT) algorithm instead of traditional lookup table (LUT)-based methods. Experimental results reveal a good integration of the Kalman-MPPT design with the DAB-based converter, particularly during irradiation and temperature variations due to changes in weather conditions, as well as a good balanced hardware design in complexity and area-time performance compared to other state-of-art FPGA designs

    Temperature based maximum power point tracking for photovoltaic modules

    Get PDF
    In this article authors propose a temperature based Maximum Power Point Tracking algorithm (MPPT). Authors show that there is an optimal current vs maximum power curve that depends on photovoltaic (PV) module temperature. Therefore, the maximum power point (MPP) can be achieved in very few commutation steps if the control forces the PV module to work in temperature dependent optimal curve. Authors shows how this PV module temperature based MPPT is stable and converges to MPP for each temperature. In order to proof its stability, authors propose a Lyapunov energy function. This Lyapunov energy function has positive values for all values except into MPP given the PV module temperature. This Lyapunov energy function has negative increment along each time step. Hence, the stability of temperature based MPPT can be demonstrated. The proposed MPPT algorithm proposes a current set point. This current set point is obtained with instantaneous PV module power and temperature dependent maximum power vs optimal current curve. Stability is analysed for different temperature levels. Optimal current vs maximum power curve has been modelled by a line. The lines' coefficients depend on PV module temperature. Proposed Lyapunov energy function is not symmetric about equilibrium or MPP because MPPT algorithm and PV module dynamic have no symmetric behaviour about this equilibrium point."Development Agency of the Basque Country (SPRI) is gratefully acknowledged for economic support through the research project "Refrigeracion de dispositivos de alto flujo termico mediante impacto de chorro" (AIRJET), KK-2018/00109, Programa ELKARTEK.

    Temperature based maximum power point tracking for photovoltaic modules

    Get PDF
    In this article authors propose a temperature based Maximum Power Point Tracking algorithm (MPPT). Authors show that there is an optimal current vs maximum power curve that depends on photovoltaic (PV) module temperature. Therefore, the maximum power point (MPP) can be achieved in very few commutation steps if the control forces the PV module to work in temperature dependent optimal curve. Authors shows how this PV module temperature based MPPT is stable and converges to MPP for each temperature. In order to proof its stability, authors propose a Lyapunov energy function. This Lyapunov energy function has positive values for all values except into MPP given the PV module temperature. This Lyapunov energy function has negative increment along each time step. Hence, the stability of temperature based MPPT can be demonstrated. The proposed MPPT algorithm proposes a current set point. This current set point is obtained with instantaneous PV module power and temperature dependent maximum power vs optimal current curve. Stability is analysed for different temperature levels. Optimal current vs maximum power curve has been modelled by a line. The lines' coefficients depend on PV module temperature. Proposed Lyapunov energy function is not symmetric about equilibrium or MPP because MPPT algorithm and PV module dynamic have no symmetric behaviour about this equilibrium point."Development Agency of the Basque Country (SPRI) is gratefully acknowledged for economic support through the research project "Refrigeracion de dispositivos de alto flujo termico mediante impacto de chorro" (AIRJET), KK-2018/00109, Programa ELKARTEK.

    Implementation of a Novel Tabu Search Optimization Algorithm to Extract Parasitic Parameters of Solar Panel

    Get PDF
    The aging of PV cells reduces their electrical performance i.e., the parasitic parameters are introduced in the solar panel. The shunt resistance (RSh), series resistance (RS), photo current (IPh), diode current (Id), and diffusion constant (a1) are known as parasitic or extraction parameters. Cracks and hotspots reduce the performance of PV cells and result in poor V–I characteristics. Certain tests are carried out over a long period of time to determine the quality of solar cells; for example, 1000 h of testing is comparable to 20 years of operation. The extraction of solar parameters is important for PV modules. The Tabu Search Optimization (TSO) algorithm is a robust meta-heuristic algorithm that was employed in this study for the extraction of parasitic parameters. Particle Swarm Optimization (PSO) and a Genetic lgorithm (GA), as well as other well-known optimization methods, were used to test the proposed method's correctness. The other approaches included the lightning search algorithm (LSA), gravitational search algorithm (GSA), and pattern search (PS). It can be concluded that the TSO approach extracts all six parameters in a reasonably short period of time. The work presented in this paper was developed and analyzed using a MATLAB-Simulink software environment.publishedVersio
    corecore