1,009 research outputs found

    Design and Control of a Compliant Joint for Upper-body Exoskeletons in Physical Assistance

    Get PDF

    Advancements in Prosthetics and Joint Mechanisms

    Get PDF
    abstract: Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism. A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Design and Verification of a Compact Variable Stiffness Actuator With a Very Large Range of Stiffness

    Get PDF
    Current conventional robots require high stiffness joints to provide absolute positioning accuracy in free space which also causes problems when operating in constrained space. To circumvent these problems, Variable Stiffness Actuators (VSAs) can be used to vary their stiffness to suit the task being performed. A new VSA was designed to provide a very large range of stiffness in a compact size. The Arched Flexure VSA uses a cantilevered beam acting as the flexure with a variable point of contact. It allows the joint to have continuous variable stiffness, have zero stiffness for a small range of motion, and rapid stiffness change. Finite element analysis was used to evaluate flexture stiffness. The flexure geometry was optimized for two different objectives. In the first case, the flexture was optimized for maximum stiffness range. This optimization resulted in a stiffness ratio of 1200. In the second case, the flexture was optimized for both maximum stiffness range and constant relative sensitivity. This optimization resulted in a stiffness ratio of 100. A small proof-of-concept VSA actuator based on the constant relative sensitivity alternative was designed, built, and tested. The VSA provided a stiffness ratio of 55, a little more than half of that expected for the flexure alone. The VSA weighed 1.45 pounds and fits within a 4.5 inch by 2 inch by 5 inch volume. The VSA provides the anticipated free joint range for zero stiffness and provides 360 degrees of rotation. It changes from minimum to maximum stiffness in 0.12 seconds

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    SPRING BASED ON FLAT PERMANENT MAGNETS: DESIGN, ANALYSIS AND USE IN VARIABLE STIFFNESS ACTUATOR

    Get PDF
    Modern robot applications benefit from including variable stiffness actuators (VSA) in the kinematic chain. In this paper, we focus on VSA utilizing a magnetic spring made of two coaxial rings divided into alternately magnetized sections. The torque generated between the rings is opposite to the angular deflection from equilibrium and its value increases as the deflection grows – within a specific range of angles that we call a stable range. Beyond the stable range, the spring exhibits negative stiffness what causes problems with prediction and control. In order to avoid it, it is convenient to operate within a narrower range of angles that we call a safe range. The magnetic springs proposed so far utilize few pairs of arc magnets, and their safe ranges are significantly smaller than the stable ones. In order to broaden the safe range, we propose a different design of the magnetic spring, which is composed of flat magnets, as well as a new arrangement of VSA (called ATTRACTOR) utilizing the proposed spring. Correctness and usability of the concept are verified in FEM analyses and experiments performed on constructed VSA, which led to formulating models of the magnetic spring. The results show that choosing flat magnets over arc ones enables shaping spring characteristics in a way that broadens the safe range. An additional benefit is lowered cost, and the main disadvantage is a reduced maximal torque that the spring is capable of transmitting. The whole VSA can be perceived as promising construction for further development, miniaturization and possible application in modern robotic mechanisms

    Design and Analysis of Novel Actuation Mechanism with Controllable Stiffness

    Get PDF
    Actuators intended for human–machine interaction systems are usually designed to be mechanically compliant. Conventional actuators are not suitable for this purpose due to typically high stiffness. Advanced powered prosthetic and orthotic devices can vary their stiffness during a motion cycle and are power-efficient. This paper proposes a novel actuator design that modulates stiffness by means of a flexible beam. A motorized drive system varies the active length of the cantilever beam, thus achieving stiffness modulation. New large deflection formulation for cantilever beams with rolling contact constraints is used to determine the moment produced by the actuator. To validate the proposed solution method, an experiment was performed to measure large static deformations of a cantilever beam with the same boundary conditions as in the actuator design. The experiments indicate excellent agreement between measured and calculated contact forces between beam and roller, from which the actuator moment is determined

    Design of high-performance legged robots: A case study on a hopping and balancing robot

    Get PDF
    The availability and capabilities of present-day technology suggest that legged robots should be able to physically outperform their biological counterparts. This thesis revolves around the philosophy that the observed opposite is caused by over-complexity in legged robot design, which is believed to substantially suppress design for high-performance. In this dissertation a design philosophy is elaborated with a focus on simple but high performance design. This philosophy is governed by various key points, including holistic design, technology-inspired design, machine and behaviour co-design and design at the performance envelope. This design philosophy also focuses on improving progress in robot design, which is inevitably complicated by the aspire for high performance. It includes an approach of iterative design by trial-and-error, which is believed to accelerate robot design through experience. This thesis mainly focuses on the case study of Skippy, a fully autonomous monopedal balancing and hopping robot. Skippy is maximally simple in having only two actuators, which is the minimum number of actuators required to control a robot in 3D. Despite its simplicity, it is challenged with a versatile set of high-performance activities, ranging from balancing to reaching record jump heights, to surviving crashes from several meters and getting up unaided after a crash, while being built from off-the-shelf technology. This thesis has contributed to the detailed mechanical design of Skippy and its optimisations that abide the design philosophy, and has resulted in a robust and realistic design that is able to reach a record jump height of 3.8m. Skippy is also an example of iterative design through trial-and-error, which has lead to the successful design and creation of the balancing-only precursor Tippy. High-performance balancing has been successfully demonstrated on Tippy, using a recently developed balancing algorithm that combines the objective of tracking a desired position command with balancing, as required for preparing hopping motions. This thesis has furthermore contributed to several ideas and theories on Skippy's road of completion, which are also useful for designing other high-performance robots. These contributions include (1) the introduction of an actuator design criterion to maximize the physical balance recovery of a simple balancing machine, (2) a generalization of the centre of percussion for placement of components that are sensitive to shock and (3) algebraic modelling of a non-linear high-gravimetric energy density compression spring with a regressive stress-strain profile. The activities performed and the results achieved have been proven to be valuable, however they have also delayed the actual creation of Skippy itself. A possible explanation for this happening is that Skippy's requirements and objectives were too ambitious, for which many complications were encountered in the decision-making progress of the iterative design strategy, involving trade-offs between exercising trial-and-error, elaborate simulation studies and the development of above-mentioned new theories. Nevertheless, from (1) the resulting realistic design of Skippy, (2) the successful creation and demonstrations of Tippy and (3) the contributed theories for high-performance robot design, it can be concluded that the adopted design philosophy has been generally successful. Through the case study design project of the hopping and balancing robot Skippy, it is shown that proper design for high physical performance (1) can indeed lead to a robot design that is capable of physically outperforming humans and animals and (2) is already very challenging for a robot that is intended to be very simple

    The Design and Characterization of a Soft Haptic Interface for Rehabilitation of Impaired Hand Function

    Get PDF
    abstract: The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness and devices that are bulky, costly, and have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This research project presents a portable cost-effective soft robotic haptic device with a broad stiffness range that is adjustable and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator as well as the structure of the haptic interface. It is made with interchangeable soft elastomeric sleeves that can be customized to include materials of varying stiffness to increase or decrease the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance with the stiffness the user specifies. A preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. Results indicate that the region of controllable stiffness was in the center of the device, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. Finally, a qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.Dissertation/ThesisMasters Thesis Biomedical Engineering 201
    corecore