4,433 research outputs found

    Linking language and emotion: how emotion is understood in language comprehension, production and prediction using psycholinguistic methods

    Get PDF
    Emotions are an integral part of why and how we use language in everyday life. We communicate our concerns, express our woes, and share our joy through the use of non-verbal and verbal language. Yet there is a limited understanding of when and how emotional language is processed differently to neutral language, or of how emotional information facilitates or inhibits language processing. Indeed, various efforts have been made to bring back emotions into the discipline of psycholinguistics in the last decade. This can be seen in many interdisciplinary models focusing on the role played by emotion in each aspect of linguistic experience. In this thesis, I answer this call and pursue questions that remain unanswered in psycholinguistics regarding its interaction with emotion. The general trend that I am using to bring emotion into psycholinguistic research is straightforward. Where applicable and relevant, I use well-established tasks or paradigms to investigate the effects of emotional content in language processing. Hence, I focused on three main areas of language processing: comprehension, production and prediction. The first experimental chapter includes a series of experiments utilising the Modality Switching Paradigm to investigate whether sentences describing emotional states are processed differently from sentences describing cognitive states. No switching effects were found consistently in my 3 experiments. My results suggest that these distinct classes of interoceptive concepts, such as ‘thinking’ or ‘being happy’, are not processed differently from each other, suggesting that people do not switch attention between different interoceptive systems when comprehending emotional or cognitive sentences. I discuss the implications for grounded cognition theory in the embodiment literature. In my second experimental chapter, I used the Cumulative Semantic Interference Paradigm to investigate these two questions: (1) whether emotion concepts interfere with one another when repeatedly retrieved (emotion label objects), and (2) whether similar interference occurs for concrete objects that share similar valence association (emotion-laden objects). This could indicate that people use information such as valence and arousal to group objects in semantic memory. I found that interference occurs when people retrieve direct emotion labels repeatedly (e.g., “happy” and “sad”) but not when they retrieve the names of concrete objects that have similar emotion connotations (e.g., “puppy” and “rainbow”). I discuss my findings in terms of the different types of information that support representation of abstract vs. concrete concepts. In my final experimental chapter, I used the Visual World Paradigm to investigate whether the emotional state of an agent is used to inform predictions during sentence processing. I found that people do use the description of emotional state of an agent (e.g., “The boy is happy”) to predict the cause of that affective state during sentence processing (e.g., “because he was given an ice-cream”). A key result here is that people were more likely to fixate on the emotionally congruent objects (e.g., ice-cream) compared to incongruent objects (e.g., broccoli). This suggests that people rapidly and automatically inform predictions about upcoming sentence information based on the emotional state of the agent. I discuss our findings as a novel contribution to the Visual World literature. I conducted a diverse set of experiments using a range of established psycholinguistic methods to investigate the roles of emotional information in language processing. I found clear results in the eye-tracking study but inconsistent effects in both switching and interference studies. I interpret these mixed findings in the following way: emotional content does not always have effects in language processing and that effect are most likely in tasks that explicitly require participants to simulate emotion states in some way. Regardless, not only was I successful in finding some novel results by extending previous tasks, but I was also able to show that this is an avenue that can be explored more to advance the affective psycholinguistic field

    Separately, Connectedly: Exploring Trauma Through Ekphrasis in Contemporary Novels

    Get PDF
    This thesis examines ekphrasis as a rhetorical tool to explore, represent, and contemplate trauma affect in contemporary novels. From the Greek phrase for ‘description,’ ekphrasis is part of a long and ancient literary tradition, dating as far back as the ancient depictions of art on urns, weaponry, as well as more disambiguated descriptions of scenes and people. The uses of ekphrasis as a literary device are broad and complex, but its use is under-researched in contemporary novels, and there is a near total absence of investigation into ekphrasis within the novel as a means of contemplating and understanding the affect of a condition that is inherently abstract and disorienting.Literary trauma theory has evolved considerably in recent years. In keeping with important findings in psychology and psychiatric research, there is a broad recognition that rethinking trauma representation beyond the recitation and reliving of events and into textured descriptions of trauma affect is essential for thoughtful, nuanced explorations of an experience that resists narrative convenience. As a result, there are increased calls to accept and represent its inherent fractured nature and resist the authorial temptation to forge a story around it that fits neatly into a cohesive whole. This thesis proposes a framework for considering how various aspects of ekphrastic descriptions of real and imagined art as well as their connotative and denotative significance in the novel reveals nuance in the representation of trauma affect through the activation of language and image. The contemporary novels explored herein are: The Goldfinch by Donna Tartt, What I Loved by Siri Hustvedt, and How to Be Both by Ali Smith. Each of these novels present ekphrasis and affect differently, which enables broader testing of the flexibility of the proposed framework

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN

    Get PDF
    Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and labor cost issues. Moreover, in many cases, smart devices are in hard-to-access places, making accessibility for disposal and replacement difficult. Finally, battery waste harms the environment. To overcome these issues, vibration-based energy harvesters have been proposed and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy which is generated due to the motion of an object into electric energy. Energy transduction mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic methods; the piezoelectric method is generally preferred to the other methods, particularly if the frequency fluctuations are considerable. In response, piezoelectric vibration-based energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are two challenges with PVEH: the maximum amount of extractable voltage and the effective (operational) frequency bandwidth are often insufficient. In this dissertation, a new type of integrated multiple system comprised of a cantilever and spring-oscillator is proposed to improve and develop the performance of the energy harvester in terms of extractable voltage and effective frequency bandwidth. The new energy harvester model is proposed to supply sufficient energy to power low-power electronic devices like RFID components. Due to the temperature fluctuations, the thermal effect over the performance of the harvester is initially studied. To alter the resonance frequency of the harvester structure, a rotating element system is considered and analyzed. In the analytical-numerical analysis, Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive the governing equations of the harvester motion and corresponding electric circuit. It is observed that integration of the spring-oscillator subsystem alters the boundary condition of the cantilever and subsequently reforms the resulting characteristic equation into a more complicated nonlinear transcendental equation. To find the resonance frequencies, this equation is solved numerically in MATLAB. It is observed that the inertial effects of the oscillator rendered to the cantilever via the restoring force effects of the spring significantly alter vibrational features of the harvester. Finally, the voltage frequency response function is analytically and numerically derived in a closed-from expression. Variations in parameter values enable the designer to mutate resonance frequencies and mode shape functions as desired. This is particularly important, since the generated energy from a PVEH is significant only if the excitation frequency coming from an external source matches the resonance (natural) frequency of the harvester structure. In subsequent sections of this work, the oscillator mass and spring stiffness are considered as the design parameters to maximize the harvestable voltage and effective frequency bandwidth, respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. Since the voltage frequency response function cannot be implemented in a computer algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic and neural networks. The voltage function requires manual assistance to find the resonance frequency and cannot be done automatically using computer algorithms. Specifically, to apply the numerical root-solver, one needs to manually provide the solver with an initial guess. Such an estimation is accomplished using a plot of the characteristic equation along with human visual inference. Thus, the entire process cannot be automated. Moreover, the voltage function encompasses several coefficients making the process computationally expensive. Thus, training a supervised machine learning regressor is essential. The trained regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic optimization procedure. The optimization problem is implemented, first to find the maximum voltage and second to find the maximum widened effective frequency bandwidth, which yields the optimal oscillator mass value along with the optimal spring stiffness value. As there is often no control over the external excitation frequency, it is helpful to design an adaptive energy harvester. This means that, considering a specific given value of the excitation frequency, energy harvester system parameters (oscillator mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) frequency of the system aligns with the given excitation frequency. To do so, the given excitation frequency value is considered as the input and the system parameters are assumed as outputs which are estimated via the neural network fuzzy logic regressor. Finally, an experimental setup is implemented for a simple pure cantilever energy harvester triggered by impact excitations. Unlike the theoretical section, the experimental excitation is considered to be an impact excitation, which is a random process. The rationale for this is that, in the real world, the external source is a random trigger. Harmonic base excitations used in the theoretical chapters are to assess the performance of the energy harvester per standard criteria. To evaluate the performance of a proposed energy harvester model, the input excitation type consists of harmonic base triggers. In summary, this dissertation discusses several case studies and addresses key issues in the design of optimized piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the integrated systems is presented with equation derivations. Second, the proposed model is decomposed and analyzed in terms of mechanical and electrical frequency response functions. To do so, analytic-numeric methods are adopted. Later, influential parameters of the integrated system are detected. Then the proposed model is optimized with respect to the two vital criteria of maximum amount of extractable voltage and widened effective (operational) frequency bandwidth. Corresponding design (influential) parameters are found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a soft computing method. The accuracy of the trained integrated algorithms is verified using the analytical-numerical closed-form expression of the voltage function. Then, an adaptive piezoelectric vibration-based energy harvester (PVEH) is designed. This final design pertains to the cases where the excitation (driving) frequency is given and constant, so the desired goal is to match the natural frequency of the system with the given driving frequency. In this response, a regressor using neural network fuzzy logic is designed to find the proper design parameters. Finally, the experimental setup is implemented and tested to report the maximum voltage harvested in each test execution

    Introduction to Psychology

    Get PDF
    Introduction to Psychology is a modified version of Psychology 2e - OpenStax

    Investigating the learning potential of the Second Quantum Revolution: development of an approach for secondary school students

    Get PDF
    In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ïŹfth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ïŹelds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiïŹed Proportional ConïŹ‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiïŹers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiïŹcation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiïŹcation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiïŹcation, and hybrid techniques mixing deep learning with belief functions as well

    Gaussian Control Barrier Functions : A Gaussian Process based Approach to Safety for Robots

    Get PDF
    In recent years, the need for safety of autonomous and intelligent robots has increased. Today, as robots are being increasingly deployed in closer proximity to humans, there is an exigency for safety since human lives may be at risk, e.g., self-driving vehicles or surgical robots. The objective of this thesis is to present a safety framework for dynamical systems that leverages tools from control theory and machine learning. More formally, the thesis presents a data-driven framework for designing safety function candidates which ensure properties of forward invariance. The potential benefits of the results presented in this thesis are expected to help applications such as safe exploration, collision avoidance problems, manipulation tasks, and planning, to name some. We utilize Gaussian processes (GP) to place a prior on the desired safety function candidate, which is to be utilized as a control barrier function (CBF). The resultant formulation is called Gaussian CBFs and they reside in a reproducing kernel Hilbert space. A key concept behind Gaussian CBFs is the incorporation of both safety belief as well as safety uncertainty, which former barrier function formulations did not consider. This is achieved by using robust posterior estimates from a GP where the posterior mean and variance serve as surrogates for the safety belief and uncertainty respectively. We synthesize safe controllers by framing a convex optimization problem where the kernel-based representation of GPs allows computing the derivatives in closed-form analytically. Finally, in addition to the theoretical and algorithmic frameworks in this thesis, we rigorously test our methods in hardware on a quadrotor platform. The platform used is a Crazyflie 2.1 which is a versatile palm-sized quadrotor. We provide our insights and detailed discussions on the hardware implementations which will be useful for large-scale deployment of the techniques presented in this dissertation.Ph.D

    The Mercury 2023

    Full text link
    • 

    corecore