499 research outputs found

    A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations

    Full text link

    R3MC: A Riemannian three-factor algorithm for low-rank matrix completion

    Full text link
    We exploit the versatile framework of Riemannian optimization on quotient manifolds to develop R3MC, a nonlinear conjugate-gradient method for low-rank matrix completion. The underlying search space of fixed-rank matrices is endowed with a novel Riemannian metric that is tailored to the least-squares cost. Numerical comparisons suggest that R3MC robustly outperforms state-of-the-art algorithms across different problem instances, especially those that combine scarcely sampled and ill-conditioned data.Comment: Accepted for publication in the proceedings of the 53rd IEEE Conference on Decision and Control, 201

    Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure

    Full text link
    The numerical solution of partial differential equations on high-dimensional domains gives rise to computationally challenging linear systems. When using standard discretization techniques, the size of the linear system grows exponentially with the number of dimensions, making the use of classic iterative solvers infeasible. During the last few years, low-rank tensor approaches have been developed that allow to mitigate this curse of dimensionality by exploiting the underlying structure of the linear operator. In this work, we focus on tensors represented in the Tucker and tensor train formats. We propose two preconditioned gradient methods on the corresponding low-rank tensor manifolds: A Riemannian version of the preconditioned Richardson method as well as an approximate Newton scheme based on the Riemannian Hessian. For the latter, considerable attention is given to the efficient solution of the resulting Newton equation. In numerical experiments, we compare the efficiency of our Riemannian algorithms with other established tensor-based approaches such as a truncated preconditioned Richardson method and the alternating linear scheme. The results show that our approximate Riemannian Newton scheme is significantly faster in cases when the application of the linear operator is expensive.Comment: 24 pages, 8 figure

    Riemannian preconditioning

    Get PDF
    This paper exploits a basic connection between sequential quadratic programming and Riemannian gradient optimization to address the general question of selecting a metric in Riemannian optimization, in particular when the Riemannian structure is sought on a quotient manifold. The proposed method is shown to be particularly insightful and efficient in quadratic optimization with orthogonality and/or rank constraints, which covers most current applications of Riemannian optimization in matrix manifolds.Belgium Science Policy Office, FNRS (Belgium)This is the author accepted manuscript. The final version is available from The Society for Industrial and Applied Mathematics via http://dx.doi.org/10.1137/14097086
    • …
    corecore