280 research outputs found

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio

    Manifold Learning in Medical Imaging

    Get PDF
    Manifold learning theory has seen a surge of interest in the modeling of large and extensive datasets in medical imaging since they capture the essence of data in a way that fundamentally outperforms linear methodologies, the purpose of which is to essentially describe things that are flat. This problematic is particularly relevant with medical imaging data, where linear techniques are frequently unsuitable for capturing variations in anatomical structures. In many cases, there is enough structure in the data (CT, MRI, ultrasound) so a lower dimensional object can describe the degrees of freedom, such as in a manifold structure. Still, complex, multivariate distributions tend to demonstrate highly variable structural topologies that are impossible to capture with a single manifold learning algorithm. This chapter will present recent techniques developed in manifold theory for medical imaging analysis, to allow for statistical organ shape modeling, image segmentation and registration from the concept of navigation of manifolds, classification, as well as disease prediction models based on discriminant manifolds. We will present the theoretical basis of these works, with illustrative results on their applications from various organs and pathologies, including neurodegenerative diseases and spinal deformities

    Parametric Regression on the Grassmannian

    Get PDF
    We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric regression. As customary in the literature, we start from the energy minimization formulation of linear least-squares in Euclidean spaces and generalize this concept to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In fact, it allows us to extend the basic geodesic model to (1) a time-warped variant and (2) cubic splines. We demonstrate the utility of the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without any specifically-tailored steps along the processing pipeline.Comment: 14 pages, 11 figure

    Méthodes numériques et statistiques pour l'analyse de trajectoire dans un cadre de geométrie Riemannienne.

    Get PDF
    This PhD proposes new Riemannian geometry tools for the analysis of longitudinal observations of neuro-degenerative subjects. First, we propose a numerical scheme to compute the parallel transport along geodesics. This scheme is efficient as long as the co-metric can be computed efficiently. Then, we tackle the issue of Riemannian manifold learning. We provide some minimal theoretical sanity checks to illustrate that the procedure of Riemannian metric estimation can be relevant. Then, we propose to learn a Riemannian manifold so as to model subject's progressions as geodesics on this manifold. This allows fast inference, extrapolation and classification of the subjects.Cette thèse porte sur l'élaboration d'outils de géométrie riemannienne et de leur application en vue de la modélisation longitudinale de sujets atteints de maladies neuro-dégénératives. Dans une première partie, nous prouvons la convergence d'un schéma numérique pour le transport parallèle. Ce schéma reste efficace tant que l'inverse de la métrique peut être calculé rapidement. Dans une deuxième partie, nous proposons l'apprentissage une variété et une métrique riemannienne. Après quelques résultats théoriques encourageants, nous proposons d'optimiser la modélisation de progression de sujets comme des géodésiques sur cette variété

    Image Registration and Predictive Modeling: Learning the Metric on the Space of Diffeomorphisms

    Get PDF
    We present a method for metric optimization in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, by treating the induced Riemannian metric on the space of diffeomorphisms as a kernel in a machine learning context. For simplicity, we choose the kernel Fischer Linear Discriminant Analysis (KLDA) as the framework. Optimizing the kernel parameters in an Expectation-Maximization framework, we define model fidelity via the hinge loss of the decision function. The resulting algorithm optimizes the parameters of the LDDMM norm-inducing differential operator as a solution to a group-wise registration and classification problem. In practice, this may lead to a biology-aware registration, focusing its attention on the predictive task at hand such as identifying the effects of disease. We first tested our algorithm on a synthetic dataset, showing that our parameter selection improves registration quality and classification accuracy. We then tested the algorithm on 3D subcortical shapes from the Schizophrenia cohort Schizconnect. Our Schizophrenia-Control predictive model showed significant improvement in ROC AUC compared to baseline parameters

    Information Geometry of Wasserstein Statistics on Shapes and Affine Deformations

    Full text link
    Information geometry and Wasserstein geometry are two main structures introduced in a manifold of probability distributions, and they capture its different characteristics. We study characteristics of Wasserstein geometry in the framework of Li and Zhao (2023) for the affine deformation statistical model, which is a multi-dimensional generalization of the location-scale model. We compare merits and demerits of estimators based on information geometry and Wasserstein geometry. The shape of a probability distribution and its affine deformation are separated in the Wasserstein geometry, showing its robustness against the waveform perturbation in exchange for the loss in Fisher efficiency. We show that the Wasserstein estimator is the moment estimator in the case of the elliptically symmetric affine deformation model. It coincides with the information-geometrical estimator (maximum-likelihood estimator) when and only when the waveform is Gaussian. The role of the Wasserstein efficiency is elucidated in terms of robustness against waveform change

    Density estimation and modeling on symmetric spaces

    Full text link
    In many applications, data and/or parameters are supported on non-Euclidean manifolds. It is important to take into account the geometric structure of manifolds in statistical analysis to avoid misleading results. Although there has been a considerable focus on simple and specific manifolds, there is a lack of general and easy-to-implement statistical methods for density estimation and modeling on manifolds. In this article, we consider a very broad class of manifolds: non-compact Riemannian symmetric spaces. For this class, we provide a very general mathematical result for easily calculating volume changes of the exponential and logarithm map between the tangent space and the manifold. This allows one to define statistical models on the tangent space, push these models forward onto the manifold, and easily calculate induced distributions by Jacobians. To illustrate the statistical utility of this theoretical result, we provide a general method to construct distributions on symmetric spaces. In particular, we define the log-Gaussian distribution as an analogue of the multivariate Gaussian distribution in Euclidean space. With these new kernels on symmetric spaces, we also consider the problem of density estimation. Our proposed approach can use any existing density estimation approach designed for Euclidean spaces and push it forward to the manifold with an easy-to-calculate adjustment. We provide theorems showing that the induced density estimators on the manifold inherit the statistical optimality properties of the parent Euclidean density estimator; this holds for both frequentist and Bayesian nonparametric methods. We illustrate the theory and practical utility of the proposed approach on the space of positive definite matrices

    Generalized Linear Models for Geometrical Current predictors. An application to predict garment fit

    Get PDF
    The aim of this paper is to model an ordinal response variable in terms of vector-valued functional data included on a vector-valued RKHS. In particular, we focus on the vector-valued RKHS obtained when a geometrical object (body) is characterized by a current and on the ordinal regression model. A common way to solve this problem in functional data analysis is to express the data in the orthonormal basis given by decomposition of the covariance operator. But our data present very important differences with respect to the usual functional data setting. On the one hand, they are vector-valued functions, and on the other, they are functions in an RKHS with a previously defined norm. We propose to use three different bases: the orthonormal basis given by the kernel that defines the RKHS, a basis obtained from decomposition of the integral operator defined using the covariance function, and a third basis that combines the previous two. The three approaches are compared and applied to an interesting problem: building a model to predict the fit of children’s garment sizes, based on a 3D database of the Spanish child population. Our proposal has been compared with alternative methods that explore the performance of other classifiers (Suppport Vector Machine and k-NN), and with the result of applying the classification method proposed in this work, from different characterizations of the objects (landmarks and multivariate anthropometric measurements instead of currents), obtaining in all these cases worst results

    Positive Definite Kernels in Machine Learning

    Full text link
    This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions {k(x,),xX}\{k(x,\cdot),x\in\mathcal{X}\} associated with a kernel kk defined on a space X\mathcal{X}. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.Comment: draft. corrected a typo in figure
    corecore