17,161 research outputs found

    Query Evaluation in Recursive Databases

    Get PDF

    Liberating Composition from Language Dictatorship

    Get PDF
    Historically, programming languages have been—although benevolent—dictators: fixing a lot of semantics into built-in language constructs. Over the years, (some) programming languages have freed the programmers from restrictions to use only built-in libraries, built-in data types, or built-in type checking rules. Even though, arguably, such freedom could lead to anarchy, or people shooting themselves in the foot, the contrary tends to be the case: a language that does not allow for extensibility, is depriving software engineers from the ability to construct proper abstractions and to structure software in the most optimal way. Instead, the software becomes less structured and maintainable than would be possible if the software engineer could express the behavior of the program with the most appropriate abstractions. The new idea proposed by this paper is to move composition from built-in language constructs to programmable, first-class abstractions in the language. As an emerging result, we present the Co-op concept of a language, which shows that it is possible with a relatively simple model to express a wide range of compositions as first-class concepts

    Link-time smart card code hardening

    Get PDF
    This paper presents a feasibility study to protect smart card software against fault-injection attacks by means of link-time code rewriting. This approach avoids the drawbacks of source code hardening, avoids the need for manual assembly writing, and is applicable in conjunction with closed third-party compilers. We implemented a range of cookbook code hardening recipes in a prototype link-time rewriter and evaluate their coverage and associated overhead to conclude that this approach is promising. We demonstrate that the overhead of using an automated link-time approach is not significantly higher than what can be obtained with compile-time hardening or with manual hardening of compiler-generated assembly code

    Free composition instead of language dictatorship

    Get PDF
    Historically, programming languages have been—benevolent—dictators: reducing all possible semantics to specific ones offered by a few built-in language constructs. Over the years, some programming languages have freed the programmers from the restrictions to use only built-in libraries, built-in data types, and builtin type-checking rules. Even though—arguably—such freedom could lead to anarchy, or people shooting themselves in the foot, the contrary tends to be the case: a language that does not allow for extensibility is depriving software engineers of the ability to construct proper abstractions and to structure software in the most optimal way. Therefore the software becomes less structured and maintainable than would be possible if the software engineer could express the behavior of the program with the most appropriate abstractions. The idea proposed by this paper is to move composition from built-in language constructs to programmable, first-class abstractions in a language. We discuss several prototypes of the Co-op language, which show that it is possible, with a relatively simple model, to express a wide range of compositions as first-class concepts

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311
    corecore