6,656 research outputs found

    Self-adaptive GA, quantitative semantic similarity measures and ontology-based text clustering

    Get PDF
    As the common clustering algorithms use vector space model (VSM) to represent document, the conceptual relationships between related terms which do not co-occur literally are ignored. A genetic algorithm-based clustering technique, named GA clustering, in conjunction with ontology is proposed in this article to overcome this problem. In general, the ontology measures can be partitioned into two categories: thesaurus-based methods and corpus-based methods. We take advantage of the hierarchical structure and the broad coverage taxonomy of Wordnet as the thesaurus-based ontology. However, the corpus-based method is rather complicated to handle in practical application. We propose a transformed latent semantic analysis (LSA) model as the corpus-based method in this paper. Moreover, two hybrid strategies, the combinations of the various similarity measures, are implemented in the clustering experiments. The results show that our GA clustering algorithm, in conjunction with the thesaurus-based and the LSA-based method, apparently outperforms that with other similarity measures. Moreover, the superiority of the GA clustering algorithm proposed over the commonly used k-means algorithm and the standard GA is demonstrated by the improvements of the clustering performance

    Mining health knowledge graph for health risk prediction

    Get PDF
    Nowadays classification models have been widely adopted in healthcare, aiming at supporting practitioners for disease diagnosis and human error reduction. The challenge is utilising effective methods to mine real-world data in the medical domain, as many different models have been proposed with varying results. A large number of researchers focus on the diversity problem of real-time data sets in classification models. Some previous works developed methods comprising of homogeneous graphs for knowledge representation and then knowledge discovery. However, such approaches are weak in discovering different relationships among elements. In this paper, we propose an innovative classification model for knowledge discovery from patients’ personal health repositories. The model discovers medical domain knowledge from the massive data in the National Health and Nutrition Examination Survey (NHANES). The knowledge is conceptualised in a heterogeneous knowledge graph. On the basis of the model, an innovative method is developed to help uncover potential diseases suffered by people and, furthermore, to classify patients’ health risk. The proposed model is evaluated by comparison to a baseline model also built on the NHANES data set in an empirical experiment. The performance of proposed model is promising. The paper makes significant contributions to the advancement of knowledge in data mining with an innovative classification model specifically crafted for domain-based data. In addition, by accessing the patterns of various observations, the research contributes to the work of practitioners by providing a multifaceted understanding of individual and public health

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions
    • …
    corecore