87 research outputs found

    High level coordination and decision making of a simulated robotic soccer team

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Development of a Locomotion and Balancing Strategy for Humanoid Robots

    Get PDF
    The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, makes the gait unnatural, energy inefficient and exert large amounts of torque to the knee joint. Thus creating a walking engine that produces a quality and natural gait is essential for humanoid robots in general and is a factor for succeeding in RoboCup competition. Humanoids robots are required to walk fast to be practical for various life tasks. However, its complex structure makes it prone to falling during fast locomotion. On the same hand, the robots are expected to work in constantly changing environments alongside humans and robots, which increase the chance of collisions. Several human-inspired recovery strategies have been studied and adopted to humanoid robots in order to face unexpected and avoidable perturbations. These strategies include hip, ankle, and stepping, however, the use of the arms as a recovery strategy did not enjoy as much attention. The arms can be employed in different motions for fall prevention. The arm rotation strategy can be employed to control the angular momentum of the body and help to regain balance. In this master\u27s thesis, I developed a detailed study of different ways in which the arms can be used to enhance the balance recovery of the NAO humanoid robot while stationary and during locomotion. I model the robot as a linear inverted pendulum plus a flywheel to account for the angular momentum change at the CoM. I considered the role of the arms in changing the body\u27s moment of inertia which help to prevent the robot from falling or to decrease the falling impact. I propose a control algorithm that integrates the arm rotation strategy with the on-board sensors of the NAO. Additionally, I present a simple method to control the amount of recovery from rotating the arms. I also discuss the limitation of the strategy and how it can have a negative impact if it was misused. I present simulations to evaluate the approach in keeping the robot stable against various disturbance sources. The results show the success of the approach in keeping the NAO stable against various perturbations. Finally,I adopt the arm rotation to stabilize the ball kick, which is a common reason for falling in the soccer humanoid RoboCup competitions

    Two Gait Walking Mobile Robot with Teleoperation Over a Wireless Network

    Get PDF
    The robot provides a platform for individuals with limited mobility to navigate urban terrain. The system should have minimal impact on its environment, be very stable during movement, and be easily integrate wireless network systems. Minimal impact on the environment, was achieved using a hexapedal robot using a triangular paired-leg design. The hexapod was given two separate gaits, one for normal walking and one for negotiating stairs. This allowed the center of gravity to remain low while normally walking. The teleoperation was conducted over a wireless internet connection using a central dial home server. The robot was to designed to each criteria successfully. During the project, future additions were considered, making the robot a good platform for future projects

    Extending the RoboCup Rescue to Support Stigmergy: Experiments and Results

    Get PDF
    Social insects have inspired researches in computer sciences as well asengineers to develop models for coordination and cooperation in multiagent systems.One example of these models is the model of stigmergy. In this model agents useindirect communication (comunication trough the environment) in order to coordinateactions. The RoboCup Rescue simulator is used as a testbed to evaluate this modelin a real world considering a highly constrained scenario of an earthquake. This pa-per investigates the feasibility of using stigmergy in the RoboCup Rescue and theimprovements of performance can be obtained. We extended the RoboCup Rescueenvironment to enable the use of stigmergy by the agents. We compared the results ofa multiagent system that uses stigmergy against two other approaches: a multiagentsystem that uses a greedy strategy and no communication, and a multiagent systemwhere agents communicate via direct messages. Experimental results shown that theuse of stigmergy leads to an improvement on agents’ performance by 9.02% to 38.6%if comparing to the system with no communication and can be statistically equivalentto the system which uses messages, depending on the scenario

    Humanoid Robot NAO : developing behaviours for soccer humanoid robots

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Applying reinforcement learning in playing Robosoccer using the AIBO

    Get PDF
    "Robosoccer is a popular test bed for AI programs around the world in which AIBO entertainments robots take part in the middle sized soccer event. These robots need a variety of skills to perform in a semi-real environment like this. The three key challenges are manoeuvrability, image recognition and decision making skills. This research is focussed on the decision making skills ... The work focuses on whether reinforcement learning as a form of semi supervised learning can effectively contribute to the goal keeper's decision making when a shot is taken." -Master of Computing (by research

    Desenvolvimento de comportamentos para robô humanoide

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaHumanoid robotics is an area of active research. Robots with human body are better suited to execute tasks in environments designed for humans. Moreover, people feel more comfortable interacting with robots that have a human appearance. RoboCup encourages robotic research by promoting robotic competitions. One of these competitions is the Standard Platform League (SPL) in which humanoid robots play soccer. The robot used is the Nao robot, created by Aldebaran Robotics. The di erence between the teams that compete in this league is the software that controls the robots. Another league promoted by RoboCup is the 3D Soccer Simulation League (3DSSL). In this league the soccer game is played in a computer simulation. The robot model used is also the one of the Nao robot. However, there are a few di erences in the dimensions and it has one more Degree of Freedom (DoF) than the real robot. Moreover, the simulator cannot reproduce reality with precision. Both these leagues are relevant for this thesis, since they use the same robot model. The objective of this thesis is to develop behaviors for these leagues, taking advantage of the previous work developed for the 3DSSL. These behaviors include the basic movements needed to play soccer, namely: walking, kicking the ball, and getting up after a fall. This thesis presents the architecture of the agent developed for the SPL, which is similar to the architecture of the FC Portugal team agent from the 3DSSL, hence allowing to port code between both leagues easily. It was also developed an interface that allows to control a leg in a more intuitive way. It calculates the joint angles of the leg, using the following parameters: three angles between the torso and the line connecting hip and ankle; two angles between the foot and the perpendicular of the torso; and the distance between the hip and the ankle. It was also developed an algorithm to calculate the three joint angles of the hip that produce the desired vertical rotation, since the Nao robot does not have a vertical joint in the hip. This thesis presents also the behaviors developed for the SPL, some of them based on the existing behaviors from the 3DSSL. It is presented a behavior that allows to create robot movements by de ning a sequence of poses, an open-loop omnidirectional walking algorithm, and a walk optimized in the simulator adapted to the real robot. Feedback was added to this last walk to make it more robust against external disturbances. Using the behaviors presented in this thesis, the robot achieved a forward velocity of 16 cm/s, a lateral velocity of 6 cm/s, and rotated at 40 deg/s. The work developed in this thesis allows to have an agent to control the Nao robot and execute the basic low level behaviors for competing in the SPL. Moreover, the similarities between the architecture of the agent for the SPL with that of the agent from the 3DSSL allow to use the same high level behaviors in both leagues.A robótica humanoide é uma área em ativo desenvolvimento. Os robôs com forma humana estão melhor adaptados para executarem tarefas em ambientes desenhados para humanos. Além disso, as pessoas sentem-se mais confortáveis quando interagem com robôs que tenham aparência humana. O RoboCup incentiva a investigação na área da robótica através da realização de competições de robótica. Uma destas competições é a Standard Platform League (SPL) na qual robôs humanoides jogam futebol. O robô usado é o robô Nao, criado pela Aldebaran Robotics. A diferença entre as equipas que competem nesta liga está no software que controla os robôs. Outra liga presente no RoboCup é a 3D Soccer Simulation League (3DSSL). Nesta liga o jogo de futebol é jogado numa simulação por computador. O modelo de robô usado é também o do robô Nao. Contudo, existem umas pequenas diferenças nas dimensões e este tem mais um grau de liberdade do que o robô real. O simulador também não consegue reproduzir a realidade com perfeição. Ambas estas ligas são importantes para esta dissertação, pois usam o mesmo modelo de robô. O objectivo desta dissertação é desenvolver comportamentos para estas ligas, aproveitando o trabalho prévio desenvolvido para a 3DSSL. Estes comportamentos incluem os movimentos básicos necessários para jogar futebol, nomeadamente: andar, chutar a bola e levantar-se depois de uma queda. Esta dissertação apresenta a arquitetura do agente desenvolvida para a SPL, que é similar á arquitetura do agente da equipa FC Portugal da 3DSSL, para permitir uma mais fácil partilha de código entre as ligas. Foi também desenvolvida uma interface que permite controlar uma perna de maneira mais intuitiva. Ela calcula os ângulos das juntas da perna, usando os seguintes parâmetros: três ângulos entre o torso e a linha que une anca ao tornozelo; dois ângulos entre o pé e a perpendicular do torso; e a distância entre a anca e o tornozelo. Nesta dissertação foi também desenvolvido um algoritmo para calcular os três ângulos das juntas da anca que produzam a desejada rotação vertical, visto o robô Nao não ter uma junta na anca que rode verticalmente. Esta dissertação também apresenta os comportamentos desenvolvidos para a SPL, alguns dos quais foram baseados nos comportamentos já existentes na 3DSSL. É apresentado um modelo de comportamento que permite criar movimentos para o robô de nindo uma sequência de poses, um algoritmo para um andar open-loop e omnidirecional e um andar otimizado no simulador e adaptado para o robô real. A este último andar foi adicionado um sistema de feedback para o tornar mais robusto. Usando os comportamentos apresentados nesta dissertação, o robô atingiu uma velocidade de 16 cm/s para frente, 6 cm/s para o lado e rodou sobre si pr oprio a 40 graus/s. O trabalho desenvolvido nesta dissertação permite ter um agente que controle o robô Nao e execute os comportamentos básicos de baixo nível para competir na SPL. Além disso, as semelhan cas entre a arquitetura do agente para a SPL com a arquitetura do agente da 3DSSL permite usar os mesmos comportamentos de alto nível em ambas as ligas

    Development of an autonomous mobile robot with planning and location in a structured environment

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáWith the advance of technology mobile robots have been increasingly applied in the industry, performing repetitive work with high performance, and in environments that pose risks to human health. The present work plans and develops a mobile robot platform for the micromouse competition. The micromouse consists of a small autonomous mobile robot that, when placed in an unknown labyrinth, is able to map it, search for the best path between the starting point and the goal and travel it in the shortest possible time. To accomplish these tasks, the robot must be able to self-locate, map the maze as it traverses it and plan paths based on the map obtained. The developed self-localization method is based on the odometry, the laser sensors present in the robot and on a previous knowledge of the start point and the configuration of the environment. Several methodologies of locomotion in unknown environment and route planning are analyzed in order to obtain the combination with the best performance. In order to verify the results, the present work is developed in real environment, in 3D simulation and also with a hardware in the loop capability. Labyrinths from previous competitions are used as basis for comparing methodologies and validating results. At the end it presents the algorithm capable of fulfilling all the requirements of the micromouse competition together with the results of its evaluation run.Com o avanço da tecnologia, os robôs móveis têm sido cada vez mais aplicados na indústria, realizando trabalhos repetitivos com alto desempenho e em ambientes que expõem riscos à saúde humana. O presente trabalho planeja e desenvolve um robô móvel para a competição micromouse. O micromouse consiste em um pequeno robô autônomo que, ao ser colocado em um labirinto desconhecido, é capaz de mapeá-lo, procurar o melhor caminho entre o ponto de partida e o objetivo, e percorrê-lo no menor tempo possível. Para realizar estas tarefas, o robô deve ser capaz de se auto-localizar, mapear o labirinto enquanto o percorre e planejar caminhos com base no mapa obtido. O método de auto-localização desenvolvido baseia-se na odometria, nos sensores a laser presentes no robô e em um prévio conhecimento do ponto de início e da configuração do ambiente. Diversas metodologias de locomoção em ambiente desconhecido e planejamento de rotas são analisadas buscando-se obter a combinação com o melhor desempenho. Para averiguação de resultados o presente trabalho desenvolve-se em ambiente real e em simulação 3D com hardware in the loop. Labirintos de competições anteriores são utilizados de base para o comparativo de metodologias e validação de resultados. Ao final apresenta-se o algoritmo capaz de cumprir todas as exigências da competição micromouse juntamente com os resultados em sua corrida de avaliação

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC
    corecore