285 research outputs found

    Non-Local Compressive Sensing Based SAR Tomography

    Get PDF
    Tomographic SAR (TomoSAR) inversion of urban areas is an inherently sparse reconstruction problem and, hence, can be solved using compressive sensing (CS) algorithms. This paper proposes solutions for two notorious problems in this field: 1) TomoSAR requires a high number of data sets, which makes the technique expensive. However, it can be shown that the number of acquisitions and the signal-to-noise ratio (SNR) can be traded off against each other, because it is asymptotically only the product of the number of acquisitions and SNR that determines the reconstruction quality. We propose to increase SNR by integrating non-local estimation into the inversion and show that a reasonable reconstruction of buildings from only seven interferograms is feasible. 2) CS-based inversion is computationally expensive and therefore barely suitable for large-scale applications. We introduce a new fast and accurate algorithm for solving the non-local L1-L2-minimization problem, central to CS-based reconstruction algorithms. The applicability of the algorithm is demonstrated using simulated data and TerraSAR-X high-resolution spotlight images over an area in Munich, Germany.Comment: 10 page

    Diffusion Models for Interferometric Satellite Aperture Radar

    Full text link
    Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models, achieving high performance in natural image generation. However, their performance relative to non-natural images, like radar-based satellite data, remains largely unknown. Generating large amounts of synthetic (and especially labelled) satellite data is crucial to implement deep-learning approaches for the processing and analysis of (interferometric) satellite aperture radar data. Here, we leverage PDMs to generate several radar-based satellite image datasets. We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue. Indeed, accelerated sampling strategies, which work well on simple image datasets like MNIST, fail on our radar datasets. We provide a simple and versatile open-source https://github.com/thomaskerdreux/PDM_SAR_InSAR_generation to train, sample and evaluate PDMs using any dataset on a single GPU

    An Unsupervised Generative Neural Approach for InSAR Phase Filtering and Coherence Estimation

    Full text link
    Phase filtering and pixel quality (coherence) estimation is critical in producing Digital Elevation Models (DEMs) from Interferometric Synthetic Aperture Radar (InSAR) images, as it removes spatial inconsistencies (residues) and immensely improves the subsequent unwrapping. Large amount of InSAR data facilitates Wide Area Monitoring (WAM) over geographical regions. Advances in parallel computing have accelerated Convolutional Neural Networks (CNNs), giving them advantages over human performance on visual pattern recognition, which makes CNNs a good choice for WAM. Nevertheless, this research is largely unexplored. We thus propose "GenInSAR", a CNN-based generative model for joint phase filtering and coherence estimation, that directly learns the InSAR data distribution. GenInSAR's unsupervised training on satellite and simulated noisy InSAR images outperforms other five related methods in total residue reduction (over 16.5% better on average) with less over-smoothing/artefacts around branch cuts. GenInSAR's Phase, and Coherence Root-Mean-Squared-Error and Phase Cosine Error have average improvements of 0.54, 0.07, and 0.05 respectively compared to the related methods.Comment: to be published in a future issue of IEEE Geoscience and Remote Sensing Letter

    A Sparsity-Based InSAR Phase Denoising Algorithm Using Nonlocal Wavelet Shrinkage

    Get PDF
    An interferometric synthetic aperture radar (InSAR) phase denoising algorithm using the local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks was developed. From the Bayesian perspective, the double-l1 norm regularization model that enforces the local and nonlocal sparsity constraints was used. Taking advantages of coefficients of the nonlocal similarity between group blocks for the wavelet shrinkage, the proposed algorithm effectively filtered the phase noise. Applying the method to simulated and acquired InSAR data, we obtained satisfactory results. In comparison, the algorithm outperformed several widely-used InSAR phase denoising approaches in terms of the number of residues, root-mean-square errors and other edge preservation indexes

    Deep Learning for InSAR Phase Filtering: An Optimized Framework for Phase Unwrapping

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) data processing applications, such as deformation monitoring and topographic mapping, require an interferometric phase filtering step. Indeed, the filtering quality significantly impacts the deformation and terrain height estimation accuracy. However, the existing classical and deep learning-based phase filtering methods provide artefacts in the filtered areas where a large amount of noise prevents retrieving the original signal. In this way, we can no longer distinguish the underlying informative signal for the next processing step. This paper proposes a deep convolutional neural network filtering method, developing a novel learning strategy to preserve the initial phase noise input into these crucial areas. Thanks to the encoder–decoder powerful phase feature extraction ability, the network can predict an accurate coherence and filtered interferometric phase, ensuring reliable final results. Furthermore, we also address a novel Synthetic Aperture Radar (SAR) interferograms simulation strategy that, using initial parameters estimated from real SAR images, considers physical behaviors typical of a real acquisition. According to the results achieved on simulated and real InSAR data, the proposed filtering method significantly outperforms the classical and deep learning-based ones

    A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR

    Get PDF
    L1L_1 regularization is used for finding sparse solutions to an underdetermined linear system. As sparse signals are widely expected in remote sensing, this type of regularization scheme and its extensions have been widely employed in many remote sensing problems, such as image fusion, target detection, image super-resolution, and others and have led to promising results. However, solving such sparse reconstruction problems is computationally expensive and has limitations in its practical use. In this paper, we proposed a novel efficient algorithm for solving the complex-valued L1L_1 regularized least squares problem. Taking the high-dimensional tomographic synthetic aperture radar (TomoSAR) as a practical example, we carried out extensive experiments, both with simulation data and real data, to demonstrate that the proposed approach can retain the accuracy of second order methods while dramatically speeding up the processing by one or two orders. Although we have chosen TomoSAR as the example, the proposed method can be generally applied to any spectral estimation problems.Comment: 11 pages, IEEE Transactions on Geoscience and Remote Sensin
    • …
    corecore