1,387 research outputs found

    A Review of Wireless and PLC Propagation Channel Characteristics for Smart Grid Environments

    Get PDF

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Field Trials for the Empirical Characterization of the Low Voltage Grid Access Impedance From 35 kHz to 500 kHz

    Get PDF
    The access impedance of low-voltage (LV) power networks is a major factor related to the performance of the narrow-band power line communications (NB-PLCs) and, in a wider sense, to electromagnetic compatibility (EMC) performance. Up to date, there is still a lack of knowledge about the frequency-dependent access impedance for frequencies above 9 kHz and up to 500 kHz, which is the band where the NB-PLC operates. The access impedance affects the transmission of the NB-PLC signal, and it determines the propagation of the non-intentional emissions that may disturb other electrical devices, including malfunctioning or reduced lifetime of equipment. This paper presents the results of field measurements of the LV access impedance up to 500 kHz in different scenarios, with measurement locations close to end users and near transformers. The results provide useful information to analyze the characteristics of the LV access impedance, including variation with frequency, ranges of values for different frequency bands, and analysis of specific phenomena. Moreover, the results reveal a diverse frequency-dependent behavior of the access impedance in different scenarios, depending on the grid topology, the number of end users (that is, number and type of connected loads), and the type of transformation center. Overall, the results of this paper offer a better understanding of the transmission of NB-PLC signals and EMC-related phenomena.The authors would like to thank Iberdrola for the availability and the collaboration of authorized staff for carrying out the field trials

    Upgrading the Power Grid Functionalities with Broadband Power Line Communications: Basis, Applications, Current Trends and Challenges

    Get PDF
    This article reviews the basis and the main aspects of the recent evolution of Broadband Power Line Communications (BB-PLC or, more commonly, BPL) technologies. The article starts describing the organizations and alliances involved in the development and evolution of BPL systems, as well as the standardization institutions working on PLC technologies. Then, a short description of the technical foundation of the recent proposed technologies and a comparison of the main specifications are presented; the regulatory activities related to the limits of emissions and immunity are also addressed. Finally, some representative applications of BPL and some selected use cases enabled by these technologies are summarized, together with the main challenges to be faced.This work was financially supported in part by the Basque Government under the grants IT1426-22, PRE_2021_1_0006, and PRE_2021_1_0051, and by the Spanish Government under the grants PID2021-124706OB-I00 and RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”)

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    Evaluating the more suitable ISM frequency band for iot-based smart grids: a quantitative study of 915 MHz vs. 2400 MHz

    Get PDF
    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.This research was supported by the MINECO/FEDER project grants TEC2013-47016-C2-2-R (COINS) and TEC2016-76465-C2-1-R (AIM). The authors would like to thank Juan Salvador Perez Madrid nd Domingo Meca (part of the Iberdrola staff) for the support provided during the realization of this work. Ruben M. Sandoval also thanks the Spanish MICINN for an FPU (REF FPU14/03424) pre-doctoral fellowship

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    On power line positioning systems

    Get PDF
    Power line infrastructure is available almost everywhere. Positioning systems aim to estimate where a device or target is. Consequently, there may be an opportunity to use power lines for positioning purposes. This survey article reports the different efforts, working principles, and possibilities for implementing positioning systems relying on power line infrastructure for power line positioning systems (PLPS). Since Power Line Communication (PLC) systems of different characteristics have been deployed to provide communication services using the existing mains, we also address how PLC systems may be employed to build positioning systems. Although some efforts exist, PLPS are still prospective and thus open to research and development, and we try to indicate the possible directions and potential applications for PLPS.European Commissio

    Modified Timed Efficient Stream Loss-tolerant Authentication to Secure Power Line Communication

    Get PDF
    This paper investigates the feasibility of Timed Efficient Stream Loss-tolerant Authentica- tion to serve security needs of Power Line Communication (PLC) system. PLC network has been identified as the ideal choice to function as the last mile network, deliver load management messages to smart meters. However, there is need to address the security concerns for load management messages delivered over power line communications. The ubiquitous nature of the power line communication infrastructure exposes load management systems (LMS) deployed over it to a security risk. Ordinarily, PLC network does not em- ploy any security measures on which the smart meters and data concentrators can depend on. Therefore, the need to provide a secure mechanism for communication of load man- agement system messages over a PLC network. In LMS, source authentication is of highest priority because we need to respond only to messages from an authenticated source. This is achieved by investigating suitable robust authentication protocols. In this paper we present modifications to Timed Efficient Stream Loss-tolerant Authentication for secure authentica- tion to secure messages for load management over PLC. We demonstrate that PLC can be used to securely and effectively deliver Load Management messages to smart meters, with minimal overhead.

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC
    • …
    corecore