376,448 research outputs found

    Beneath the surface of talking about physicians: A statistical model of language for patient experience comments

    Get PDF
    This study applies natural language processing (NLP) techniques to patient experience comments. Our goal was to examine the language describing care experiences with two groups of physicians: those with scores in the top 100 and those with scores in the bottom 100 among all physicians (n=498) who received scores from patient satisfaction surveys. Our analysis showed a statistically significant difference in the language used to describe care experiences with these two distinct groups of physicians. This analysis illustrates how to apply NLP techniques in categorizing and building a statistical model for language use in order to identify meaningful language and significant phrasing in a dataset of natural language. We provide a review of limited work at the intersection of language analysis and patient experience. We present our analysis and conclude with a discussion on what care providers and patient experience leaders can learn from language used in patient experience comments for the delivery of patient-centered care. Experience Framework This article is associated with the Innovation & Technology lens of The Beryl Institute Experience Framework. (http://bit.ly/ExperienceFramework) Access other PXJ articles related to this lens. Access other resources related to this len

    Using R in Water Resources Education

    Get PDF
    This review paper will deal with the possibilities of applying the R programming language in water resources and hydrologic applications in education and research. The objective of this paper is to present some features and packages that make R a powerful environment for analysing data from the hydrology and water resources management fields, hydrological modelling, the post processing of the results of such modelling, and other task. R is maintained by statistical programmers with the support of an increasing community of users from many different backgrounds, including hydrologists, which allows access to both well established and experimental techniques in various areas

    Representing and extracting knowledge from single cell data

    Full text link
    Single-cell analysis is currently one of the most high-resolution techniques to study biology. The large complex datasets that have been generated have spurred numerous developments in computational biology, in particular the use of advanced statistics and machine learning. This review attempts to explain the deeper theoretical concepts that underpin current state-of-the-art analysis methods. Single-cell analysis is covered from cell, through instruments, to current and upcoming models. A minimum of mathematics and statistics has been used, but the reader is assumed to either have basic knowledge of single-cell analysis workflows, or have a solid knowledge of statistics. The aim of this review is to spread concepts which are not yet in common use, especially from topology and generative processes, and how new statistical models can be developed to capture more of biology. This opens epistemological questions regarding our ontology and models, and some pointers will be given to how natural language processing (NLP) may help overcome our cognitive limitations for understanding single-cell data

    Doctor of Philosophy

    Get PDF
    dissertationThe objective of this work is to examine the efficacy of natural language processing (NLP) in summarizing bibliographic text for multiple purposes. Researchers have noted the accelerating growth of bibliographic databases. Information seekers using traditional information retrieval techniques when searching large bibliographic databases are often overwhelmed by excessive, irrelevant data. Scientists have applied natural language processing technologies to improve retrieval. Text summarization, a natural language processing approach, simplifies bibliographic data while filtering it to address a user's need. Traditional text summarization can necessitate the use of multiple software applications to accommodate diverse processing refinements known as "points-of-view." A new, statistical approach to text summarization can transform this process. Combo, a statistical algorithm comprised of three individual metrics, determines which elements within input data are relevant to a user's specified information need, thus enabling a single software application to summarize text for many points-of-view. In this dissertation, I describe this algorithm, and the research process used in developing and testing it. Four studies comprised the research process. The goal of the first study was to create a conventional schema accommodating a genetic disease etiology point-of-view, and an evaluative reference standard. This was accomplished through simulating the task of secondary genetic database curation. The second study addressed the development iv and initial evaluation of the algorithm, comparing its performance to the conventional schema using the previously established reference standard, again within the task of secondary genetic database curation. The third and fourth studies evaluated the algorithm's performance in accommodating additional points-of-view in a simulated clinical decision support task. The third study explored prevention, while the fourth evaluated performance for prevention and drug treatment, comparing results to a conventional treatment schema's output. Both summarization methods identified data that were salient to their tasks. The conventional genetic disease etiology and treatment schemas located salient information for database curation and decision support, respectively. The Combo algorithm located salient genetic disease etiology, treatment, and prevention data, for the associated tasks. Dynamic text summarization could potentially serve additional purposes, such as consumer health information delivery, systematic review creation, and primary research. This technology may benefit many user groups

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    Relevance-based language modelling for recommender systems

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal Information Processing and Management: an International Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal Information Processing and Management: an International Journal, 49, 4, (2013) DOI: 10.1016/j.ipm.2013.03.001Relevance-Based Language Models, commonly known as Relevance Models, are successful approaches to explicitly introduce the concept of relevance in the statistical Language Modelling framework of Information Retrieval. These models achieve state-of-the-art retrieval performance in the pseudo relevance feedback task. On the other hand, the field of recommender systems is a fertile research area where users are provided with personalised recommendations in several applications. In this paper, we propose an adaptation of the Relevance Modelling framework to effectively suggest recommendations to a user. We also propose a probabilistic clustering technique to perform the neighbour selection process as a way to achieve a better approximation of the set of relevant items in the pseudo relevance feedback process. These techniques, although well known in the Information Retrieval field, have not been applied yet to recommender systems, and, as the empirical evaluation results show, both proposals outperform individually several baseline methods. Furthermore, by combining both approaches even larger effectiveness improvements are achieved.This work was funded by Secretaría de Estado de Investigación, Desarrollo e Innovación from the Spanish Government under Projects TIN2012-33867 and TIN2011-28538-C02
    corecore