794 research outputs found

    Architecture of Micro Energy Harvesting Using Hybrid Input of RF, Thermal and Vibration for Semi-Active RFID Tag

    Get PDF
    This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 ”m CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device.This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 ”m CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device

    Energy harvesting methods for transmission lines: a comprehensive review

    Get PDF
    Humanity faces important challenges concerning the optimal use, security, and availability of energy systems, particularly electrical power systems and transmission lines. In this context, data-driven predictive maintenance plans make it possible to increase the safety, stability, reliability, and availability of electrical power systems. In contrast, strategies such as dynamic line rating (DLR) make it possible to optimize the use of power lines. However, these approaches require developing monitoring plans based on acquiring electrical data in real-time using different types of wireless sensors placed in strategic locations. Due to the specific conditions of the transmission lines, e.g., high electric and magnetic fields, this a challenging problem, aggravated by the harsh outdoor environments where power lines are built. Such sensors must also incorporate an energy harvesting (EH) unit that supplies the necessary electronics. Therefore, the EH unit plays a key role, so when designing such electronic systems, care must be taken to select the most suitable EH technology, which is currently evolving rapidly. This work reviews and analyzes the state-of-the-art technology for EH focused on transmission lines, as it is an area with enormous potential for expansion. In addition to recent advances, it also discusses the research needs and challenges that need to be addressed. Despite the importance of this topic, there is still much to investigate, as this area is still in its infancy. Although EH systems for transmission lines are reviewed, many other applications could potentially benefit from introducing wireless sensors with EH capabilities, such as power transformers, distribution switches, or low- and medium-voltage power lines, among others.This research was funded by Ministerio de Ciencia e Innovación de España, grant number PID2020-114240RB-I00 and by the Generalitat de Catalunya, grant number 2017 SGR 967.Peer ReviewedPostprint (author's final draft

    Piezoelectric Energy Harvesting: Enhancing Power Output by Device Optimisation and Circuit Techniques

    Get PDF
    Energy harvesting; that is, harvesting small amounts of energy from environmental sources such as solar, air flow or vibrations using small-scale (≈1cm 3 ) devices, offers the prospect of powering portable electronic devices such as GPS receivers and mobile phones, and sensing devices used in remote applications: wireless sensor nodes, without the use of batteries. Numerous studies have shown that power densities of energy harvesting devices can be hundreds of ”W; however the literature also reveals that power requirements of many electronic devices are in the mW range. Therefore, a key challenge for the successful deployment of energy harvesting technology remains, in many cases, the provision of adequate power. This thesis aims to address this challenge by investigating two methods of enhancing the power output of a piezoelectric-based vibration energy harvesting device. Cont/d

    Study of systems powered by triboelectric generators for bioengineering applications

    Get PDF
    Treballs Finals de Grau d'Enginyeria BiomĂšdica. Facultat de Medicina i CiĂšncies de la Salut. Universitat de Barcelona. Curs: 2020-2021. Director: Pere LluĂ­s Miribel CatalĂ . Co-director: Manel Puig i Vida

    Energy-aware Approaches for Energy Harvesting Powered Wireless Sensor Systems

    Get PDF
    Energy harvesting (EH) powered wireless sensor systems (WSSs) are gaining increasing popularity since they enable the system to be self-powering, long-lasting, almost maintenance-free, and environmentally friendly. However, the mismatch between energy generated by harvesters and energy demanded by WSS to perform the required tasks is always a bottleneck as the ambient environmental energy is limited, and the WSS is power hunger. Therefore, the thesis has proposed, designed, implemented, and tested the energy-aware approaches for wireless sensor motes (WSMs) and wireless sensor networks (WSNs), including hardware energy-aware interface (EAI), software EAI, sensing EAI and network energy-aware approaches to address this mismatch. The main contributions of this thesis to the research community are designing the energy-aware approaches for EH Powered WSMs and WSNs which enables a >30 times reduction in sleep power consumption of WSNs for successful EH powering WSNs without a start-up issue in the condition of mismatch between the energy generated by harvesters and energy demanded by WSSs in both mote and network systems. For EH powered WSM systems, the energy-aware approaches have (1) enabled the harvested energy to be accumulated in energy storage devices to deal with the mismatch for the operation of the WSMs without the start-up issue, (2) enabled a commercial available WSMs with a reduced sleep current from 28.3 ÎŒA to 0.95 ÎŒA for the developed WSM, (3) thus enabled the WSM operations for a long active time of about 1.15 s in every 7.79 s to sample and transmit a large number of data (e.g., 388 bytes), rather than a few ten milliseconds and a few bytes. For EH powered WSN systems, on top of energy-aware approached for EH powered WSM, the network energy-aware approaches have presented additional capabilities for network joining process for energy-saving and enabled EH powered WSNs. Once the EH powered WSM with the network energy-aware approach is powered up and began the network joining process, energy, as an example of 48.23 mJ for a tested case, has been saved in the case of the attempt to join the network unsuccessfully. Once the EH-WSM has joined the network successfully, the smart programme applications that incorporate the software EAI, sensing EAI and hardware EAI allow the EH powered WSM to achieve (4) asynchronous operation or (5) synchronised operation based on the energy available after the WSM has joined the network.Through designs, implementations, and analyses, it has been shown that the developed energy-aware approaches have provided an enabled capability for EH successfully powering WSS technologies in the condition of energy mismatch, and it has the potential to be used for wide industrial applications

    Power management circuit: design and comparison of efficient techniques for ultra-low power analog switch and rectifier circuit

    Get PDF
    Dissertação de mestrado integrado em Engenharia EletrĂłnica Industrial e Computadores, Instrumentação e Microssistemas EletrĂłnicosA presente dissertação de mestrado apresenta um estudo na ĂĄrea de CMOS em circuitos analĂłgicos/digitais para extração e conversĂŁo de potĂȘncia adequado para aplicaçÔes em energy harvesting. As principais contribuiçÔes cientĂ­ficas deste trabalho sĂŁo: o desenvolvimento de circuitos de baixo consumo energĂ©tico, tais como um interruptor analĂłgico e um retificador que podem extrair e converter eficientemente a potĂȘncia de saĂ­da do energy harvester. Com os dois circuitos apresentados na presente dissertação, Ă© possĂ­vel alimentar um nĂł de uma rede de sensores sem fios. Estes circuitos foram projetados utilizando a tecnologia CMOS de 130 nm e as respetivas simulaçÔes foram realizadas utilizando o software Cadence Virtuoso Analog Environment. Neste trabalho projetou-se novo interruptor analĂłgico para aplicaçÔes em energy harvesting com especial atenção para a obtenção de um baixo consumo energĂ©tico. A configuração apresentada consegue atingir uma baixa resistĂȘncia, quando em condução (ON), e evitar correntes reversas indesejadas provenientes da carga. Os resultados das simulaçÔes revelam que o circuito: consome uma potĂȘncia de 200.8 nW; atinge uma baixa resistĂȘncia, quando em condução, de 216 ℩; gera uma baixa corrente de fuga de 44 pA. Assim sendo, Ă© possĂ­vel verificar que este circuito consegue operar com um baixo consumo, baixa tensĂŁo e com uma baixa frequĂȘncia. Para alĂ©m disso, o mesmo interruptor analĂłgico consegue realizar a tĂ©cnica de up-conversion dentro do circuito de controlo de potĂȘncia, o que indica a possibilidade de o mesmo contribuir para uma aplicação real com energy harvesters vibracionais. O retificador em CMOS proposto Ă© constituĂ­do por dois estĂĄgios: um passivo com um conversor de tensĂŁo negativa; e um outro estĂĄgio com um dĂ­odo ativo controlado por um circuito de cancelamento de threshold. O primeiro estĂĄgio Ă© responsĂĄvel por retificar completamente o sinal de entrada com uma queda de tensĂŁo de 1 mV, enquanto que o Ășltimo tem a função de reduzir a corrente reversa indesejada, o que consequentemente consegue aumentar a potĂȘncia transferida para a carga. Deste modo, o circuito consegue atingir uma eficiĂȘncia em tensĂŁo e potĂȘncia de 99 % e 90%, respetivamente, para um sinal de entrada com 0.45 V de amplitude e para cargas resistivas de valor baixo. Ainda assim, este circuito consegue funcionar a uma banda de frequĂȘncias desde os 800 Hz atĂ© 51.2 kHz, o que se revela ser promissor para a aplicação prĂĄtica deste projeto.The master dissertation presents a study in the area of mixed analog/digital CMOS power extraction and conversion circuits for Power Management Circuit (PMC) suitable for energy harvesting applications. The main contributions of the work are the development of low power circuits, such as an Analog Switch and a Rectifier, that can efficiently extract and convert the output power of the vibrational energy harvester into suitable electric energy for powering a Wireless Sensor Network (WSN) node. The circuit components were fully designed in the standard 130 nm CMOS process, and the respective simulation experiments were carried out using the Cadence Virtuoso Analog Environment. A new Analog Switch was designed for energy harvesting applications with special consideration for achieving low power consumption. The proposed structure can achieve a reduced ON-resistance and avoid the reverse leakage current from the load. Simulation results reveal a power consumption of about 200.8 nW, a low ON-resistance of 244.6 ℩, and a low leakage current of around 44 pA, which indicates that the analog switch has features of low power consumption, low voltage, and low-frequency operation. Furthermore, this switching circuit is suitable for performing the up-conversion technique in the PMC, which may contribute to the real application of vibrational energy harvesters. The proposed CMOS Rectifier consists of two stages, one passive stage with a negative voltage converter, and another stage with an active diode controlled by a threshold cancellation circuit. The former stage conducts the signal full-wave rectification with a voltage drop of 1 mV while the latter reduces the reverse leakage current, consequently enhancing the output power delivered to the ohmic load. As a result, the rectifier can achieve a voltage and a power conversion efficiency of over 99 % and 90 %, respectively, for an input voltage of 0.45 V and low ohmic loads. This circuit works for an operating frequency range from 800 Hz to 51.2 kHz, which is promising for practical applications

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented
    • 

    corecore