3,231 research outputs found

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    A Smart Decision System for Digital Farming

    Get PDF
    [EN] New technologies have the potential to transform agriculture and to reduce environmental impact through a green revolution. Internet of Things (IoT)-based application development platforms have the potential to run farm management tools capable of monitoring real-time events when integrated into interactive innovation models for fertirrigation. Their capabilities must extend to flexible reconfiguration of programmed actions. IoT platforms require complex smart decision-making systems based on data-analysis and data mining of big data sets. In this paper, the advantages are demonstrated of a powerful tool that applies real-time decisions from data such as variable rate irrigation, and selected parameters from field and weather conditions. The field parameters, the index vegetation (estimated using aerial images), and the irrigation events, such as flow level, pressure level, and wind speed, are periodically sampled. Data is processed in a decision-making system based on learning prediction rules in conjunction with the Drools rule engine. The multimedia platform can be remotely controlled, and offers a smart farming open data network with shared restriction levels for information exchange oriented to farmers, the fertilizer provider, and agricultural technicians that should provide the farmer with added value in the form of better decision making or more efficient exploitation operations and management.This paper has been partially supported by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR and by the "Ministerio de Ciencia, Innovacion y Universidades" through the "Ayudas para la adquisicion de equipamiento cientifico-tecnico, Subprograma estatal de infraestructuras de investigacion y equipamiento cientifico-tecnico (plan Estatal i+d+i 2017-2020)" (project EQC2018-004988-P).Cambra-Baseca, C.; Sendra, S.; Lloret, J.; Tomás Gironés, J. (2019). A Smart Decision System for Digital Farming. Agronomy. 9(5):1-19. https://doi.org/10.3390/agronomy9050216S11995Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122-135. doi:10.1108/lr-06-2015-0061Haghverdi, A., Leib, B. G., Washington-Allen, R. A., Ayers, P. D., & Buschermohle, M. J. (2015). Perspectives on delineating management zones for variable rate irrigation. Computers and Electronics in Agriculture, 117, 154-167. doi:10.1016/j.compag.2015.06.019Vazquez, J. I., Ruiz-de-Garibay, J., Eguiluz, X., Doamo, I., Renteria, S., & Ayerbe, A. (2010). Communication architectures and experiences for web-connected physical Smart objects. 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). doi:10.1109/percomw.2010.5470521Misra, S., Barthwal, R., & Obaidat, M. S. (2012). Community detection in an integrated Internet of Things and social network architecture. 2012 IEEE Global Communications Conference (GLOBECOM). doi:10.1109/glocom.2012.6503350Atzori, L., Iera, A., & Morabito, G. (2014). From «smart objects» to «social objects»: The next evolutionary step of the internet of things. IEEE Communications Magazine, 52(1), 97-105. doi:10.1109/mcom.2014.6710070Agrivi App http://www.agrivi.com/en/reApollo Project http://apollo-h2020.eu/Cambra, C., Sendra, S., Lloret, J., & Lacuesta, R. (2018). Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors, 18(5), 1333. doi:10.3390/s18051333Ortiz, A. M., Hussein, D., Park, S., Han, S. N., & Crespi, N. (2014). The Cluster Between Internet of Things and Social Networks: Review and Research Challenges. IEEE Internet of Things Journal, 1(3), 206-215. doi:10.1109/jiot.2014.2318835Ji, Z., Ganchev, I., O’Droma, M., Zhao, L., & Zhang, X. (2014). A Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and Implementation. Sensors, 14(12), 22372-22393. doi:10.3390/s141222372Ning, H., & Wang, Z. (2011). Future Internet of Things Architecture: Like Mankind Neural System or Social Organization Framework? IEEE Communications Letters, 15(4), 461-463. doi:10.1109/lcomm.2011.022411.11012

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie
    • …
    corecore