4,258 research outputs found

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Consumo de energía y calidad de servicio en redes WBAN : Una evaluación de desempeño entre capa cruzada e IEEE802.15.4

    Get PDF
    RESUMEN: Dentro de los esquemas de comunicación de redes inalámbricas de área corporal (WBAN), se encuentran los protocolos de capa cruzada, constituidos en una novedosa opción para alcanzar un balance efectivo entre consumo eficiente de energía y métricas de desempeño. En el presente trabajo, evaluamos el desempeño de una estrategia de capa cruzada al compararla contra los protocolos del estándar IEEE802.15.4 en una WBAN. Se evaluó el desempeño de ambas estrategias empleando una simulación de redes WBAN. Luego se ejecutó una comparación estadística y se encontró que la estrategia de capa cruzada ofrece un mejor desempeño con respecto a la compensación entre consumo eficiente de energía y algunas métricas de desempeño en nuestra WBAN. Observamos que en general, la estrategia de capa cruzada supera a ambos modos del estándar IEEE802.15.4 (ranurado y no-ranurado) con respecto a consumo eficiente de energía, retraso extremo a extremo, tasa de pérdida de paquetes y goodput.ABSTARCT: Different communication schemes for Wireless Body Area Networks (WBAN) pretend to achieve a fair tradeoff between efficient energy consumption and the accomplishment of performance metrics. Among those schemes are the Cross-layer protocols that constitute a good choice to achieve the aforementioned tradeoff by introducing novel protocol techniques which are away from the traditional communications model. In this work we assessed the performance of a WBAN cross-layer protocol stack by comparing it against the performance of the protocols of the IEEE802.15.4 standard, which is commonly used for WBAN deployment nowadays. We evaluated the performance of both, cross-layer and IEEE802.15.4 approaches, by means of a simulation, by using a popular network simulator and its frameworks for wireless networks. And then performed a statistical comparison and ascertained that the cross-layer protocol stack offers better performance regarding a tradeoff between efficient energy consumption and performance metrics in our particular test scenario. We observed that, in general, the cross-layer approach outperformed both modes of IEEE802.15.4 standard (slotted and unslotted) regarding energy consumption, end to end delay, packet loss rate and goodput. The results of our experiments reported that the cross-layer strategy saves up to 80% more energy than IEEE802.15.4 unslotted and it is only a 5% below the slotted mode. Regarding the quality of service metrics the performance was always better when using the cross-layer scheme

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Peak Transmission Rate Resilient Crosslayer Broadcast for Body Area Networks

    Get PDF
    International audienc

    Energy-Efficient Communication in Wireless Networks

    Get PDF
    This chapter describes the evolution of, and state of the art in, energy‐efficient techniques for wirelessly communicating networks of embedded computers, such as those found in wireless sensor network (WSN), Internet of Things (IoT) and cyberphysical systems (CPS) applications. Specifically, emphasis is placed on energy efficiency as critical to ensuring the feasibility of long lifetime, low‐maintenance and increasingly autonomous monitoring and control scenarios. A comprehensive summary of link layer and routing protocols for a variety of traffic patterns is discussed, in addition to their combination and evaluation as full protocol stacks
    corecore