695 research outputs found

    Towards a Formal Verification Methodology for Collective Robotic Systems

    Get PDF
    We introduce a UML-based notation for graphically modeling systems’ security aspects in a simple and intuitive way and a model-driven process that transforms graphical specifications of access control policies in XACML. These XACML policies are then translated in FACPL, a policy language with a formal semantics, and the resulting policies are evaluated by means of a Java-based software tool

    Swarm robotics: Cooperative navigation in unknown environments

    Get PDF
    Swarm Robotics is garnering attention in the robotics field due to its substantial benefits. It has been proven to outperform most other robotic approaches in many applications such as military, space exploration and disaster search and rescue missions. It is inspired by the behavior of swarms of social insects such as ants and bees. It consists of a number of robots with limited capabilities and restricted local sensing. When deployed, individual robots behave according to local sensing until the emergence of a global behavior where they, as a swarm, can accomplish missions individuals cannot. In this research, we propose a novel exploration and navigation method based on a combination of Probabilistic Finite Sate Machine (PFSM), Robotic Darwinian Particle Swarm Optimization (RDPSO) and Depth First Search (DFS). We use V-REP Simulator to test our approach. We are also implementing our own cost effective swarm robot platform, AntBOT, as a proof of concept for future experimentation. We prove that our proposed method will yield excellent navigation solution in optimal time when compared to methods using either PFSM only or RDPSO only. In fact, our method is proved to produce 40% more success rate along with an exploration speed of 1.4x other methods. After exploration, robots can navigate the environment forming a Mobile Ad-hoc Network (MANET) and using the graph of robots as network nodes

    Modelling a wireless connected swarm of mobile robots

    Get PDF
    It is a characteristic of swarm robotics that modelling the overall swarm behaviour in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation such models would be critical for both overall validation of algorithm correctness and detailed parameter optimisation. We seek models with predictive power: models that allow us to determine the effect of modifying parameters in individual robots on the overall swarm behaviour. This paper presents results from a study to apply the probabilistic modelling approach to a class of wireless connected swarms operating in unbounded environments. The paper proposes a probabilistic finite state machine (PFSM) that describes the network connectivity and overall macroscopic behaviour of the swarm, then develops a novel robot-centric approach to the estimation of the state transition probabilities within the PFSM. Using measured data from simulation the paper then carefully validates the PFSM model step by step, allowing us to assess the accuracy and hence the utility of the model. © Springer Science + Business Media, LLC 2008

    Control and Coordination in a Networked Robotic Platform

    Get PDF
    Control and Coordination of the robots has been widely researched area among the swarm robotics. Usually these swarms are involved in accomplishing tasks assigned to them either one after another or concurrently. Most of the times, the tasks assigned may not need the entire population of the swarm but a subset of them. In this project, emphasis has been given to determination of such subsets of robots termed as ”flock” whose size actually depends on the complexity of the task. Once the flock is determined from the swarm, leader and follower robots are determined which accomplish the task in a controlled and cooperative fashion. Although the entire control system,which is determined for collision free and coordinated environment, is stable, the results show that both wireless (bluetooth) and internet (UDP) communication system can introduce some lag which can lead robot trajectories to an unexpected set. The reason for this is each robot and a corresponding computer is considered as a complete robot and communication between the robot and the computer and between the computers was inevitable. These problems could easily be solved by integrating a computer on the robot or just add a wifi transmitter/receiver on the robot. On going down the lane, by introducing smarter robots with different kinds of sensors this project could be extended on a large scale for varied heterogenous and homogenous applications

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Power-law distribution of long-term experimental data in swarm robotics

    Get PDF
    Bio-inspired aggregation is one of the most fundamental behaviours that has been studied in swarm robotic for more than two decades. Biology revealed that the environmental characteristics are very important factors in aggregation of social insects and other animals. In this paper, we study the effects of different environmental factors such as size and texture of aggregation cues using real robots. In addition, we propose a mathematical model to predict the behaviour of the aggregation during an experiment

    Analysis of Dynamic Task Allocation in Multi-Robot Systems

    Full text link
    Dynamic task allocation is an essential requirement for multi-robot systems operating in unknown dynamic environments. It allows robots to change their behavior in response to environmental changes or actions of other robots in order to improve overall system performance. Emergent coordination algorithms for task allocation that use only local sensing and no direct communication between robots are attractive because they are robust and scalable. However, a lack of formal analysis tools makes emergent coordination algorithms difficult to design. In this paper we present a mathematical model of a general dynamic task allocation mechanism. Robots using this mechanism have to choose between two types of task, and the goal is to achieve a desired task division in the absence of explicit communication and global knowledge. Robots estimate the state of the environment from repeated local observations and decide which task to choose based on these observations. We model the robots and observations as stochastic processes and study the dynamics of the collective behavior. Specifically, we analyze the effect that the number of observations and the choice of the decision function have on the performance of the system. The mathematical models are validated in a multi-robot multi-foraging scenario. The model's predictions agree very closely with experimental results from sensor-based simulations.Comment: Preprint version of the paper published in International Journal of Robotics, March 2006, Volume 25, pp. 225-24

    Hybrid Societies : Challenges and Perspectives in the Design of Collective Behavior in Self-organizing Systems

    Get PDF
    Hybrid societies are self-organizing, collective systems, which are composed of different components, for example, natural and artificial parts (bio-hybrid) or human beings interacting with and through technical systems (socio-technical). Many different disciplines investigate methods and systems closely related to the design of hybrid societies. A stronger collaboration between these disciplines could allow for re-use of methods and create significant synergies. We identify three main areas of challenges in the design of self-organizing hybrid societies. First, we identify the formalization challenge. There is an urgent need for a generic model that allows a description and comparison of collective hybrid societies. Second, we identify the system design challenge. Starting from the formal specification of the system, we need to develop an integrated design process. Third, we identify the challenge of interdisciplinarity. Current research on self-organizing hybrid societies stretches over many different fields and hence requires the re-use and synthesis of methods at intersections between disciplines. We then conclude by presenting our perspective for future approaches with high potential in this area
    corecore