61,126 research outputs found

    Critical issues in state-of-the-art brain–computer interface signal processing

    Get PDF
    This paper reviews several critical issues facing signal processing for brain–computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research

    Critical issues in state-of-the-art brain-computer interface signal processing

    Get PDF
    Abstract This paper reviews several critical issues facing signal processing for brain-computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Brain-machine interfaces for rehabilitation in stroke: A review

    Get PDF
    BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.This study was funded by the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ13GW0053)andAMORSA(FKZ16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the fortüne-Program of the University of Tübingen (2422-0-0 and 2452-0-0), and the Basque GovernmentScienceProgram(EXOTEK:KK2016/00083). NIL was supported by the Basque Government’s scholarship for predoctoral students

    BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project

    Get PDF
    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. Results: The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of “ideal types” of disabled users may reinforce stereotypes or drown out participant “voices”. Conclusions: Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a “duty of care” while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies
    corecore