2,044 research outputs found

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication

    Wideband performance comparison between the 40 GHz and 60 GHz frequency bands for indoor radio channels

    Get PDF
    When 5G networks are to be deployed, the usability of millimeter-wave frequency allocations seems to be left out of the debate. However, there is an open question regarding the advantages and disadvantages of the main candidates for this allocation: The use of the licensed spectrum near 40 GHz or the unlicensed band at 60 GHz. Both bands may be adequate for high performance radio communication systems, and this paper provides insight into such alternatives. A large measurement campaign supplied enough data to analyze and to evaluate the network performance for both frequency bands in different types of indoor environments: Both large rooms and narrow corridors, and both line of sight and obstructed line of sight conditions. As a result of such a campaign and after a deep analysis in terms of wideband parameters, the radio channel usability is analyzed with numerical data regarding its performance

    A Genetic Algorithm-based Beamforming Approach for Delay-constrained Networks

    Get PDF
    In this paper, we study the performance of initial access beamforming schemes in the cases with large but finite number of transmit antennas and users. Particularly, we develop an efficient beamforming scheme using genetic algorithms. Moreover, taking the millimeter wave communication characteristics and different metrics into account, we investigate the effect of various parameters such as number of antennas/receivers, beamforming resolution as well as hardware impairments on the system performance. As shown, our proposed algorithm is generic in the sense that it can be effectively applied with different channel models, metrics and beamforming methods. Also, our results indicate that the proposed scheme can reach (almost) the same end-to-end throughput as the exhaustive search-based optimal approach with considerably less implementation complexity

    A review of technologies and design techniques of millimeter-wave power amplifiers

    Get PDF
    his article reviews the state-of-the-art millimeter-wave (mm-wave) power amplifiers (PAs), focusing on broadband design techniques. An overview of the main solid-state technologies is provided, including Si, gallium arsenide (GaAs), GaN, and other III-V materials, and both field-effect and bipolar transistors. The most popular broadband design techniques are introduced, before critically comparing through the most relevant design examples found in the scientific literature. Given the wide breadth of applications that are foreseen to exploit the mm-wave spectrum, this contribution will represent a valuable guide for designers who need a single reference before adventuring in the challenging task of the mm-wave PA design

    A survey on RF and microwave doherty power amplifier for mobile handset applications

    Get PDF
    This survey addresses the cutting-edge load modulation microwave and radio frequency power amplifiers for next-generation wireless communication standards. The basic operational principle of the Doherty amplifier and its defective behavior that has been originated by transistor characteristics will be presented. Moreover, advance design architectures for enhancing the Doherty power amplifier’s performance in terms of higher efficiency and wider bandwidth characteristics, as well as the compact design techniques of Doherty amplifier that meets the requirements of legacy 5G handset applications, will be discussed.Agencia Estatal de Investigación | Ref. TEC2017-88242-C3-2-RFundação para a Ciência e a Tecnologia | Ref. UIDP/50008/201

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF
    • …
    corecore