97,970 research outputs found

    Kiosks in retailing: the quiet revolution

    Get PDF
    Kiosks have the potential to be a significant application of IT in retailing, information provision and service delivery. This article discusses and analyses the application of kiosks as a channel for in-store service delivery. For these kiosks a taxonomy that characterises kiosks by their function: inform, interact, transact and relate is proposed. Eight case study examples of in store kiosks are analysed in using a framework that includes environment, task, audience, and technology. Included are: kiosks used by Halifax, Daewoo, Argos, Ikea, Debenhams, GNER, Sainsbury’s. and Boots. Both the taxonomy and the framework provide a basis for further analysis of the role of kiosks in service delivery, by allowing analysis and discussion of individual kiosks to be contextualised within a wider framework. </p

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    Species abundance information improves sequence taxonomy classification accuracy.

    Get PDF
    Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always violated. By incorporating environment-specific taxonomic abundance information, we demonstrate a significant increase in the species-level classification accuracy across common sample types. At the species level, overall average error rates decline from 25% to 14%, which is favourably comparable to the error rates that existing classifiers achieve at the genus level (16%). Our findings indicate that for most practical purposes, the assumption that reference species are equally likely to be observed is untenable. q2-clawback provides a straightforward alternative for samples from common environments

    Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance

    Get PDF
    Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches
    • …
    corecore