172,673 research outputs found

    Uses and applications of artificial intelligence in manufacturing

    Get PDF
    The purpose of the THESIS is to provide engineers and personnels with a overview of the concepts that underline Artificial Intelligence and Expert Systems. Artificial Intelligence is concerned with the developments of theories and techniques required to provide a computational engine with the abilities to perceive, think and act, in an intelligent manner in a complex environment. Expert system is branch of Artificial Intelligence where the methods of reasoning emulate those of human experts. Artificial Intelligence derives it\u27s power from its ability to represent complex forms of knowledge, some of it common sense, heuristic and symbolic, and the ability to apply the knowledge in searching for solutions. The Thesis will review : The components of an intelligent system, The basics of knowledge representation, Search based problem solving methods, Expert system technologies, Uses and applications of AI in various manufacturing areas like Design, Process Planning, Production Management, Energy Management, Quality Assurance, Manufacturing Simulation, Robotics, Machine Vision etc. Prime objectives of the Thesis are to understand the basic concepts underlying Artificial Intelligence and be able to identify where the technology may be applied in the field of Manufacturing Engineering

    Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation

    Get PDF
    This paper presents a survey of simulation and optimization modeling approaches used in reservoir systems operation problems. Optimization methods have been proved of much importance when used with simulation modeling and the two approaches when combined give the best results. The main objective of this review article is to discuss simulation, optimization and combined simulation– optimization modeling approach and to provide an overview of their applications reported in literature. In addition to classical optimization techniques, application and scope of computational intelligence techniques, such as, evolutionary computa- tions, fuzzy set theory and artificial neural networks, in reservoir system operation studies are reviewed. Conclusions and suggestive remarks based on this survey are outlined, which could be helpful for future research and for system managers to decide appropriate methodology for application to their systems

    Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation

    Get PDF
    This paper presents a survey of simulation and optimization modeling approaches used in reservoir systems operation problems. Optimization methods have been proved of much importance when used with simulation modeling and the two approaches when combined give the best results. The main objective of this review article is to discuss simulation, optimization and combined simulation– optimization modeling approach and to provide an overview of their applications reported in literature. In addition to classical optimization techniques, application and scope of computational intelligence techniques, such as, evolutionary computa- tions, fuzzy set theory and artificial neural networks, in reservoir system operation studies are reviewed. Conclusions and suggestive remarks based on this survey are outlined, which could be helpful for future research and for system managers to decide appropriate methodology for application to their systems

    A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

    Get PDF
    Energy intensive industries can be classified into those that process metal, glass, ceramics, paper, cement, and bulk chemicals. They are associated with significantly high proportions of carbon emissions, consume a lot of energy and raw materials, and cause energy wastage as a result of heat escaping from furnaces, reheating of products, and rejection of parts. In alignment with UN sustainable development goals of industry, innovation, infrastructure and responsible consumption and production, it is important to ensure that the energy consumption of EIIs are monitored and reduced such that their energy efficiency can be improved. Towards this aim, it is possible to employ the concepts of digitalization and smart manufacturing to identify the critical areas of improvement and establish enablers that can help improve the energy efficiency. The aim of this research is to review the current state of digitalisation in energy-intensive industries and propose a framework to support the realisation of sustainable smart manufacturing in Energy Intensive Industries (EIIs). The key objectives of the work are (i) the investigation of process mining and simulation modelling to support sustainability, (ii) embedding intelligence in EIIs to improve energy and material efficiency and (iii) proposing a framework to enable the digital transformation of EIIs. The proposed five-layer framework employs data acquisition, process management, simulation & modelling, artificial intelligence, and data visualisation to identify and forecast energy consumption. A detailed description of the various phases of the framework and how they can be used to support sustainability and smart manufacturing is demonstrated using business process data obtained from a machining industry. In the demonstrated case study, the process management layer utilises Disco for process mining, the simulation layer utilises Matlab SimEvent for discrete-event simulation, the artificial intelligence layer utilises Matlab for energy prediction and the visualisation layer utilises grafana to dashboard the e-KPIs. The findings of the research indicate that the proposed digital life-cycle framework helps EIIs realise sustainable smart manufacturing through better understanding of the energy-intensive processes. The study also provided a better understanding of the integration of process mining and simulation & modelling within the context of EIIs
    • …
    corecore