38,010 research outputs found

    A new strategy for case-based reasoning retrieval using classification based on association

    Get PDF
    Cased Based Reasoning (CBR) is an important area of research in the field of Artificial Intelli-gence. It aims to solve new problems by adapting solutions, that were used to solve previous similar ones. Among the four typical phases - retrieval, reuse, revise and retain, retrieval is a key phase in CBR approach, as the retrieval of wrong cases can lead to wrong decisions. To ac-complish the retrieval process, a CBR system exploits Similarity-Based Retrieval (SBR). How-ever, SBR tends to depend strongly on similarity knowledge, ignoring other forms of knowledge, that can further improve retrieval performance.The aim of this study is to integrate class association rules (CARs) as a special case of associa-tion rules (ARs), to discover a set (of rules) that can form an accurate classifier in a database. It is an efficient method when used to build a classifier, where the target is pre-determined. The proposition for this research is to answer the question of whether CARs can be integrated into a CBR system. A new strategy is proposed that suggests and uses mining class association rules from previous cases, which could strengthen similarity based retrieval (SBR). The propo-sition question can be answered by adapting the pattern of CARs, to be compared with the end of the Retrieval phase. Previous experiments and their results to date, show a link between CARs and CBR cases. This link has been developed to achieve the aim and objectives.A novel strategy, Case-Based Reasoning using Association Rules (CBRAR) is proposed to improve the performance of the SBR and to disambiguate wrongly retrieved cases in CBR. CBRAR uses CARs to generate an optimum frequent pattern tree (FP-tree) which holds a val-ue of each node. The possible advantage offered is that more efficient results can be gained, when SBR returns uncertain answers. In addition, CBRAR has been evaluated using two sources of CBR frameworks - Jcolibri and Free CBR. With the experimental evaluation on real datasets indicating that the proposed CBRAR is a better approach when compared to CBR systems, offering higher accuracy and lower error rate

    Improving the quality of the personalized electronic program guide

    Get PDF
    As Digital TV subscribers are offered more and more channels, it is becoming increasingly difficult for them to locate the right programme information at the right time. The personalized Electronic Programme Guide (pEPG) is one solution to this problem; it leverages artificial intelligence and user profiling techniques to learn about the viewing preferences of individual users in order to compile personalized viewing guides that fit their individual preferences. Very often the limited availability of profiling information is a key limiting factor in such personalized recommender systems. For example, it is well known that collaborative filtering approaches suffer significantly from the sparsity problem, which exists because the expected item-overlap between profiles is usually very low. In this article we address the sparsity problem in the Digital TV domain. We propose the use of data mining techniques as a way of supplementing meagre ratings-based profile knowledge with additional item-similarity knowledge that can be automatically discovered by mining user profiles. We argue that this new similarity knowledge can significantly enhance the performance of a recommender system in even the sparsest of profile spaces. Moreover, we provide an extensive evaluation of our approach using two large-scale, state-of-the-art online systems—PTVPlus, a personalized TV listings portal and Físchlár, an online digital video library system

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A Personalized System for Conversational Recommendations

    Full text link
    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and number of interactions required to find a satisfactory item, as compared to a control group of users interacting with a non-adaptive version of the system
    corecore