2,296 research outputs found

    Data mining and fusion

    No full text

    Geospatial Semantics

    Full text link
    Geospatial semantics is a broad field that involves a variety of research areas. The term semantics refers to the meaning of things, and is in contrast with the term syntactics. Accordingly, studies on geospatial semantics usually focus on understanding the meaning of geographic entities as well as their counterparts in the cognitive and digital world, such as cognitive geographic concepts and digital gazetteers. Geospatial semantics can also facilitate the design of geographic information systems (GIS) by enhancing the interoperability of distributed systems and developing more intelligent interfaces for user interactions. During the past years, a lot of research has been conducted, approaching geospatial semantics from different perspectives, using a variety of methods, and targeting different problems. Meanwhile, the arrival of big geo data, especially the large amount of unstructured text data on the Web, and the fast development of natural language processing methods enable new research directions in geospatial semantics. This chapter, therefore, provides a systematic review on the existing geospatial semantic research. Six major research areas are identified and discussed, including semantic interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place semantics, and cognitive geographic concepts.Comment: Yingjie Hu (2017). Geospatial Semantics. In Bo Huang, Thomas J. Cova, and Ming-Hsiang Tsou et al. (Eds): Comprehensive Geographic Information Systems, Elsevier. Oxford, U

    LiDom builder: Automatising the construction of multilingual domain modules

    Get PDF
    136 p.Laburpena Lan honetan LiDOM Builder tresnaren analisi, diseinu eta ebaluazioa aurkezten dira. Teknologian oinarritutako hezkuntzarako tresnen Domeinu Modulu Eleaniztunak testuliburu elektronikoetatik era automatikoan erauztea ahalbidetzen du LiDOM Builderek. Ezagutza eskuratzeko, Hizkuntzaren Prozesamendurako eta Ikaste Automatikorako teknikekin batera, hainbat baliabide eleaniztun erabiltzen ditu, besteak beste, Wikipedia eta WordNet.Domeinu Modulu Elebakarretik Domeinu Modulu Eleaniztunerako bidean, LiDOM Builder tresna DOM-Sortze ingurunearen (Larrañaga, 2012; Larrañaga et al., 2014) bilakaera dela esan genezake. Horretarako, LiDOM Builderek domeinua ikuspegi eleaniztun batetik adieraztea ahalbidetzen duen mekanismoa dakar. Domeinu Modulu Eleaniztunak bi maila ezberdinetako ezagutza jasotzen du: Ikaste Domeinuaren Ontologia (IDO), non hizkuntza ezberdinetan etiketatutako topikoak eta hauen arteko erlazio pedagogikoak jasotzen baitira, eta Ikaste Objektuak (IO), hau da, metadatuekin etiketatutako baliabide didaktikoen bilduma, hizkuntza horietan. LiDOM Builderek onartutako hizkuntza guztietan domeinuaren topikoak adierazteko aukera ematen du. Topiko bakoitza lotuta dago dagokion hizkuntzako bere etiketa baliokidearekin. Gainera, IOak deskribatzeko metadatu aberastuak erabiltzen ditu hizkuntza desberdinetan parekideak diren baliabide didaktikoak lotzeko.LiDOM Builderen, hasiera batean, domeinu-modulua hizkuntza jakin batean idatzitako dokumentu batetik erauziko da eta, baliabide eleaniztunak erabiliko dira, gerora, bai topikoak bai IOak beste hizkuntzetan ere lortzeko. Lan honetan, Ingelesez idatzitako liburuek osatuko dute informazio-iturri nagusia bai doitze-prozesuan bai ebaluazio-prozesuan. Zehazki, honako testuliburu hauek erabili dira: Principles of Object Oriented Programming (Wong and Nguyen, 2010), Introduction to Astronomy (Morison, 2008) eta Introduction to Molecular Biology (Raineri, 2010). Baliabide eleaniztunei dagokienez, Wikipedia, WordNet eta Wikipediatik erauzitako beste hainbat ezagutza-base erabili dira. Testuliburuetatik Domeinu Modulu Eleaniztunak eraikitzeko, LiDOM Builder hiru modulu nagusitan oinarritzen da: LiTeWi eta LiReWi moduluak IDO eleaniztuna eraikitzeaz arduratuko dira eta LiLoWi, aldiz, IO eleaniztunak eraikitzeaz. Jarraian, aipatutako modulu bakoitza xehetasun gehiagorekin azaltzen da.¿ LiTeWi (Conde et al., 2015) moduluak, edozein ikaste-domeinutako testuliburu batetik abiatuta, Hezkuntzarako Ontologia bati dagozkion hainbat termino eleaniztun identifikatuko ditu, hala nola TF-IDF, KP-Miner, CValue eta Shallow Parsing Grammar. Hori lortzeko, gainbegiratu gabeko datu-erauzketa teknikez eta Wikipediaz baliatzen da. Ontologiako topikoak erauzteak LiTeWi-n hiru urrats ditu: lehenik hautagai diren terminoen erauzketa; bigarrenik, lortutako terminoen konbinatzea eta fintzea azken termino zerrenda osatuz; eta azkenik, zerrendako terminoak beste hizkuntzetara mapatzea Wikipedia baliatuz.¿ LiReWi (Conde et al., onartzeko) moduluak Hezkuntzarako Ontologia erlazio pedagogikoez aberastuko du, beti ere testuliburua abiapuntu gisa erabilita. Lau motatako erlazio pedagogikoak erauziko ditu (isA, partOf, prerequisite eta pedagogicallyClose) hainbat teknika eta ezagutza-base konbinatuz. Ezagutza-baseen artean Wikipedia, WordNet, WikiTaxonomy, WibiTaxonomy eta WikiRelations daude. LiReWi-k ere hiru urrats emango ditu erlazioak lortzeko: hasteko, ontologiako topikoak erlazioak erauzteko erabiliko diren ezagutza-base desberdinekin mapatuko ditu; gero, hainbat erlazio-erauzle, bakoitza teknika desberdin batean oinarritzen dena, exekutatuko ditu konkurrenteki erlazio hautagaiak erauzteko; eta, bukatzeko, lortutako emaitza guztiak konbinatu eta iragaziko ditu erlazio pedagogikoen azken multzoa lortuz. Gainera, DOM-Sortzetik LiDOM Buildererako trantsizioan, tesi honetan hobetu egin dira dokumentuen indizeetatik erauzitako isA eta partOf erlazioak, Wikipedia baliabide gehigarri bezala erabilita (Conde et al., 2014).¿ LiLoWi moduluak IOak -batzuk eleaniztunak- erauziko ditu, abiapuntuko testuliburutik ez ezik Wikipedia edo WordNet bezalako ezagutza-baseetatik ere. IDO ontologiako topiko bakoitza Wikipedia eta WordNet-ekin mapatu ostean, LiLoWi-k baliabide didaktikoak erauziko ditu hainbat IO erauzlez baliatuz.IO erauzketa-prozesuan, DOM-Sortzetik LiDOM Buildereko bidean, eta Wikipedia eta WordNet erabili aurretik, ingelesa hizkuntza ere gehitu eta ebaluatu da (Conde et al., 2012).LiDOM Builderen ebaluaziori dagokionez, modulu bakoitza bere aldetik testatua eta ebaluatua izan da bai Gold-standard teknika bai aditu-ebaluazioa baliatuz. Gainera, Wikipedia eta WordNet ezagutza-baseen integrazioak IOen erauzketari ekarri dion hobekuntza ere ebaluatu da. Esan genezake kasu guztietan lortu diren emaitzak oso onak direla.Bukatzeko, eta laburpen gisa, lau dira LiDOM Builderek Domeinu Modulu Eleaniztunaren arloari egin dizkion ekarpen nagusiak:¿ Domeinu Modulu Eleaniztunak adierazteko mekanismo egokia.¿ LiTeWiren garapena. Testuliburuetatik Hezkuntzarako Ontologietarako terminologia eleaniztuna erauztea ahalbidetzen du modulu honek. Ingelesa eta Gaztelera hizkuntzentzako termino-erauzlea eskura dago https://github.com/Neuw84/LiTe URLan.¿ LiReWiren garapena. Testuliburuetatik Hezkuntzarako Ontologietarako erlazio pedagogikoak erauztea ahalbidetzen du modulu honek. Erabiltzen duen Wikipedia/WordNet mapatzailea eskura dago https://github.com/Neuw84/Wikipedia2WordNet URLan.¿ LiLoWiren garapena. Testuliburua eta Wikipedia eta WordNet ezagutza-baseak erabilita IO eleaniztunak erauztea ahalbidetzen du modulu honek

    Context-Driven Image Annotation Using ImageNet

    Get PDF
    Image annotation research has demonstrated success on test data for focused domains. Unfortunately, extending these techniques to the broader topics found in real world data often results in poor performance. This paper proposes a novel approach that leverages WordNet and ImageNet capabilities to annotate images based on local text and image features. Signatures generated from ImageNet images based on WordNet synonymous sets are compared using Earth Mover\u27s Distance against the query image and used to rank order surrounding words by relevancy. The results demonstrate effective image annotation, producing higher accuracy and improved specificity over the ALIPR image annotation system. Abstract © AAAI

    Text mining and natural language processing for the early stages of space mission design

    Get PDF
    Final thesis submitted December 2021 - degree awarded in 2022A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes.A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes

    Accessing natural history:Discoveries in data cleaning, structuring, and retrieval

    Get PDF

    A Knowledge-Based Topic Modeling Approach for Automatic Topic Labeling

    Get PDF
    Probabilistic topic models, which aim to discover latent topics in text corpora define each document as a multinomial distributions over topics and each topic as a multinomial distributions over words. Although, humans can infer a proper label for each topic by looking at top representative words of the topic but, it is not applicable for machines. Automatic Topic Labeling techniques try to address the problem. The ultimate goal of topic labeling techniques are to assign interpretable labels for the learned topics. In this paper, we are taking concepts of ontology into consideration instead of words alone to improve the quality of generated labels for each topic. Our work is different in comparison with the previous efforts in this area, where topics are usually represented with a batch of selected words from topics. We have highlighted some aspects of our approach including: 1) we have incorporated ontology concepts with statistical topic modeling in a unified framework, where each topic is a multinomial probability distribution over the concepts and each concept is represented as a distribution over words; and 2) a topic labeling model according to the meaning of the concepts of the ontology included in the learned topics. The best topic labels are selected with respect to the semantic similarity of the concepts and their ontological categorizations. We demonstrate the effectiveness of considering ontological concepts as richer aspects between topics and words by comprehensive experiments on two different data sets. In another word, representing topics via ontological concepts shows an effective way for generating descriptive and representative labels for the discovered topics
    • …
    corecore