169 research outputs found

    Hardware/Software Codesign

    Get PDF
    The current state of the art technology in integrated circuits allows the incorporation of multiple processor cores and memory arrays, in addition to application specific hardware, on a single substrate. As silicon technology has become more advanced, allowing the implementation of more complex designs, systems have begun to incorporate considerable amounts of embedded software [3]. Thus it becomes increasingly necessary for the system designers to have knowledge on both hardware and software to make efficient design tradeoffs. This is where hardware/software codesign comes into existence

    Survey on Instruction Selection: An Extensive and Modern Literature Review

    Full text link
    Instruction selection is one of three optimisation problems involved in the code generator backend of a compiler. The instruction selector is responsible of transforming an input program from its target-independent representation into a target-specific form by making best use of the available machine instructions. Hence instruction selection is a crucial part of efficient code generation. Despite on-going research since the late 1960s, the last, comprehensive survey on the field was written more than 30 years ago. As new approaches and techniques have appeared since its publication, this brings forth a need for a new, up-to-date review of the current body of literature. This report addresses that need by performing an extensive review and categorisation of existing research. The report therefore supersedes and extends the previous surveys, and also attempts to identify where future research should be directed.Comment: Major changes: - Merged simulation chapter with macro expansion chapter - Addressed misunderstandings of several approaches - Completely rewrote many parts of the chapters; strengthened the discussion of many approaches - Revised the drawing of all trees and graphs to put the root at the top instead of at the bottom - Added appendix for listing the approaches in a table See doc for more inf

    07361 Abstracts Collection -- Programming Models for Ubiquitous Parallelism

    Get PDF
    From 02.09. to 07.09.2007, the Dagstuhl Seminar 07361 ``Programming Models for Ubiquitous Parallelism\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Static resource models for code generation of embedded processors

    Get PDF
    xii+129hlm.;24c

    Simulation Native des Systèmes Multiprocesseurs sur Puce à l'aide de la Virtualisation Assistée par le Matériel

    Get PDF
    L'intégration de plusieurs processeurs hétérogènes en un seul système sur puce (SoC) est une tendance claire dans les systèmes embarqués. La conception et la vérification de ces systèmes nécessitent des plateformes rapides de simulation, et faciles à construire. Parmi les approches de simulation de logiciels, la simulation native est un bon candidat grâce à l'exécution native de logiciel embarqué sur la machine hôte, ce qui permet des simulations à haute vitesse, sans nécessiter le développement de simulateurs d'instructions. Toutefois, les techniques de simulation natives existantes exécutent le logiciel de simulation dans l'espace de mémoire partagée entre le matériel modélisé et le système d'exploitation hôte. Il en résulte de nombreux problèmes, par exemple les conflits l'espace d'adressage et les chevauchements de mémoire ainsi que l'utilisation des adresses de la machine hôte plutôt des celles des plates-formes matérielles cibles. Cela rend pratiquement impossible la simulation native du code existant fonctionnant sur la plate-forme cible. Pour surmonter ces problèmes, nous proposons l'ajout d'une couche transparente de traduction de l'espace adressage pour séparer l'espace d'adresse cible de celui du simulateur de hôte. Nous exploitons la technologie de virtualisation assistée par matériel (HAV pour Hardware-Assisted Virtualization) à cet effet. Cette technologie est maintenant disponibles sur plupart de processeurs grande public à usage général. Les expériences montrent que cette solution ne dégrade pas la vitesse de simulation native, tout en gardant la possibilité de réaliser l'évaluation des performances du logiciel simulé. La solution proposée est évolutive et flexible et nous fournit les preuves nécessaires pour appuyer nos revendications avec des solutions de simulation multiprocesseurs et hybrides. Nous abordons également la simulation d'exécutables cross- compilés pour les processeurs VLIW (Very Long Instruction Word) en utilisant une technique de traduction binaire statique (SBT) pour généré le code natif. Ainsi il n'est pas nécessaire de faire de traduction à la volée ou d'interprétation des instructions. Cette approche est intéressante dans les situations où le code source n'est pas disponible ou que la plate-forme cible n'est pas supporté par les compilateurs reciblable, ce qui est généralement le cas pour les processeurs VLIW. Les simulateurs générés s'exécutent au-dessus de notre plate-forme basée sur le HAV et modélisent les processeurs de la série C6x de Texas Instruments (TI). Les résultats de simulation des binaires pour VLIW montrent une accélération de deux ordres de grandeur par rapport aux simulateurs précis au cycle près.Integration of multiple heterogeneous processors into a single System-on-Chip (SoC) is a clear trend in embedded systems. Designing and verifying these systems require high-speed and easy-to-build simulation platforms. Among the software simulation approaches, native simulation is a good candidate since the embedded software is executed natively on the host machine, resulting in high speed simulations and without requiring instruction set simulator development effort. However, existing native simulation techniques execute the simulated software in memory space shared between the modeled hardware and the host operating system. This results in many problems, including address space conflicts and overlaps as well as the use of host machine addresses instead of the target hardware platform ones. This makes it practically impossible to natively simulate legacy code running on the target platform. To overcome these issues, we propose the addition of a transparent address space translation layer to separate the target address space from that of the host simulator. We exploit the Hardware-Assisted Virtualization (HAV) technology for this purpose, which is now readily available on almost all general purpose processors. Experiments show that this solution does not degrade the native simulation speed, while keeping the ability to accomplish software performance evaluation. The proposed solution is scalable as well as flexible and we provide necessary evidence to support our claims with multiprocessor and hybrid simulation solutions. We also address the simulation of cross-compiled Very Long Instruction Word (VLIW) executables, using a Static Binary Translation (SBT) technique to generated native code that does not require run-time translation or interpretation support. This approach is interesting in situations where either the source code is not available or the target platform is not supported by any retargetable compilation framework, which is usually the case for VLIW processors. The generated simulators execute on top of our HAV based platform and model the Texas Instruments (TI) C6x series processors. Simulation results for VLIW binaries show a speed-up of around two orders of magnitude compared to the cycle accurate simulators.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Understanding retargeting compilation techniques for network processors

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    A Compilation Flow for Parametric Dataflow: Programming Model, Scheduling, and Application to Heterogeneous MPSoC

    Get PDF
    International audienceEfficient programming of signal processing applications on embedded systems is a complex problem. High level models such as Synchronous dataflow (SDF) have been privileged candidates for dealing with this complexity. These models permit to express inherent application parallelism, as well as analysis for both verification and optimization. Parametric dataflow models aim at providing sufficient dynamicity to model new applications, while at the same time maintaining the high level of analyzability needed for efficient real life implementations. This paper presents a new compilation flow that targets parametric dataflows. Built on the LLVM compiler infrastructure, it offers an actor based C++ programming model to describe parametric graphs, a compilation front-end providing graph analysis features, and a retargetable back-end to map the application on real hardware. This paper gives an overview of this flow, with a specific focus on scheduling. The crucial gap between dataflow models and real hardware on which actor firing is not atomic, as well as the consequences on FIFOs sizing and execution pipelining are taken into account.The experimental results illustrate our compilation flow applied to compilation of 3GPP LTE-Advanced demodulation on a heterogeneous MPSoC with distributed scheduling features. This achieves performances similar to time-consuming hand made optimizations

    Custom-Instruction Synthesis for Extensible-Processor Platforms

    Full text link

    Energy-Aware Opcode Design

    Get PDF
    Abstract-Embedded processors are required to achieve high performance while running on batteries. Thus, they must exploit all the possible means available to reduce energy consumption while not sacrificing performance. In this work, one technique to reduce energy is explored to intelligently design the instructionopcodes of a processor based on a target-workload. The optimization is done using a heuristic that not-only minimizes switching between adjacent instructions, but also simplifies the decoding to reduce latches to save dynamic energy. On average, an optimized opcode is able to be decoded using 40-60% less latches in the decoder. In addition, it is shown that a decoder optimized for algorithms that had similar program structure, similar data-types or similar behavior exhibited consistent patterns of energy reduction. The techniques presented in this paper yield an average 10% reduction in the total dynamic energy. It is also shown that this heuristic can be used to achieve similar results on different issue-width processors. I. MOTIVATION Embedded devices are required to perform several complex tasks that were once attempted by high-performance systems One solution is to take a general-purpose processor and customize it for an embedded system [1]. These embedded processors are simpler than their high-performance counterparts and require significant assistance from the compiler for scheduling, branch-handling etc. However, unlike high-performance systems, wide-availability of compilers, assemblers, and other utilities are limited The first logical step for designing (or choosing) such processors is to define the target application. This ONE target application represents the main workload of this processor. It is generally a good assumption that this target application is one of the most frequently executed applications in this system. If this one target application is able to be run at high performance while consuming less energy, then the overall system energy is reduced. The main concentration of this work is to provide a heuristic for intelligent-design of the instruction opcodes for an embedded processor using one application as the target (or training application). The new-opcode configuration is created by analyzing the code-generator and reducing switching among the adjacent instructions occurring in the target application. The opcodes are designed such that frequently occurring instructions are decoded easily, which reduces the internal decoder power. Unlike previous work, which requires the superset of all benchmarks to be run on the processor to gain any power/energy reduction ( [9] [29]), we prove that one benchmark is enough to provide a significant amount of energy reduction. In addition, we show that an energyefficient opcode-design can reduce energy in the decoder and other stages of the pipelined processor. Finally, we show the effects of processor issue-width scaling on the overall power reduction using this methodology. For this work, the compiler is selected and designed before the processor. Using this design approach, the constraints imposed by the compiler (as shown in section 2) is known ahead of time, and the processor can be designed accordingly. The paper is organized as follows. The related works are explained in section 2. Section 3 gives a brief introduction of a Retargetable code-generator. The experimental framework and the benchmark-set are explained in section 4. Section 5 explains the project methodology. The discussion of results is given in section 6 and the paper is concluded in section 7. II. RELATED WORK Several works have been proposed for power and energy reduction using intelligent opcode-design. To our knowledge, the only work that closely resembles ours is by Benini et al. Cheng and Tyso

    From Parallel Programs to Customized Parallel Processors

    Get PDF
    The need for fast time to market of new embedded processor-based designs calls for a rapid design methodology of the included processors. The call for such a methodology is even more emphasized in the context of so called soft cores targeted to reconfigurable fabrics where per-design processor customization is commonplace. The C language has been commonly used as an input to hardware/software co-design flows. However, as C is a sequential language, its potential to generate parallel operations to utilize naturally parallel hardware constructs is far from optimal, leading to a customized processor design space with limited parallel resource scalability. In contrast, when utilizing a parallel programming language as an input, a wider processor design space can be explored to produce customized processors with varying degrees of utilized parallelism. This Thesis proposes a novel Multicore Application-Specific Instruction Set Processor (MCASIP) co-design methodology that exploits parallel programming languages as the application input format. In the methodology, the designer can explicitly capture the parallelism of the algorithm and exploit specialized instructions using a parallel programming language in contrast to being on the mercy of the compiler or the hardware to extract the parallelism from a sequential input. The Thesis proposes a multicore processor template based on the Transport Triggered Architecture, compiler techniques involved in static parallelization of computation kernels with barriers and a datapath integrated hardware accelerator for low overhead software synchronization implementation. These contributions enable scaling the customized processors both at the instruction and task levels to efficiently exploit the parallelism in the input program up to the implementation constraints such as the memory bandwidth or the chip area. The different contributions are validated with case studies, comparisons and design examples
    • …
    corecore