17 research outputs found

    On the intersection of distance-jj-ovoids and subpolygons in generalized polygons

    Get PDF
    De Wispelaere and Van Maldeghem gave a technique for calculating the intersection sizes of combinatorial substructures associated with regular partitions of distance-regular graphs. This technique was based on the orthogonality of the eigenvectors which correspond to distinct eigenvalues of the (symmetric) adjacency matrix. In the present paper, we give a more general method for calculating intersection sizes of combinatorial structures. The proof of this method is based on the solution of a linear system of equations which is obtained by means of double countings. We also give a new class of regular partitions of generalized hexagons and determine under which conditions ovoids and subhexagons of order (s,t)(s',t') of a generalized hexagon of order intersectinaconstantnumberofpoints.Iftheautomorphismgroupofthegeneralizedhexagonissufficientlylarge,thenthisisthecaseifandonlyif=st intersect in a constant number of points. If the automorphism group of the generalized hexagon is sufficiently large, then this is the case if and only if =s't'. We derive a similar result for the intersection of distance-2-ovoids and suboctagons of generalized octagons

    On collineations and dualities of finite generalized polygons

    Get PDF
    In this paper we generalize a result of Benson to all finite generalized polygons. In particular, given a collineation theta of a finite generalized polygon S, we obtain a relation between the parameters of S and, for various natural numbers i, the number of points x which are mapped to a point at distance i from x by theta. As a special case we consider generalized 2n-gons of order (1,t) and determine, in the generic case, the exact number of absolute points of a given duality of the underlying generalized n-gon of order t

    Ovoids and spreads of finite classical generalized hexagons and applications

    Get PDF
    One intuitively describes a generalized hexagon as a point-line geometry full of ordinary hexagons, but containing no ordinary n-gons for n<6. A generalized hexagon has order (s,t) if every point is on t+1 lines and every line contains s+1 points. The main result of my PhD Thesis is the construction of three new examples of distance-2 ovoids (a set of non-collinear points that is uniquely intersected by any chosen line) in H(3) and H(4), where H(q) belongs to a special class of order (q,q) generalized hexagons. One of these examples has lead to the construction of a new infinite class of two-character sets. These in turn give rise to new strongly regular graphs and new two-weight codes, which is why I dedicate a whole chapter on codes arising from small generalized hexagons. By considering the (0,1)-vector space of characteristic functions within H(q), one obtains a one-to-one correspondence between such a code and some substructure of the hexagon. A regular substructure can be viewed as the eigenvector of a certain (0,1)-matrix and the fact that eigenvectors of distinct eigenvalues have to be orthogonal often yields exact values for the intersection number of the according substructures. In my thesis I reveal some unexpected results to this particular technique. Furthermore I classify all distance-2 and -3 ovoids (a maximal set of points mutually at maximal distance) within H(3). As such we obtain a geometrical interpretation of all maximal subgroups of G2(3), a geometric construction of a GAB, the first sporadic examples of ovoid-spread pairings and a transitive 1-system of Q(6,3). Research on derivations of this 1-system was followed by an investigation of common point reguli of different hexagons on the same Q(6,q), with nice applications as a result. Of these, the most important is the alternative construction of the Hölz design and a subdesign. Furthermore we theoretically prove that the Hölz design on 28 points only contains Hermitian and Ree unitals (previously shown by Tonchev by computer). As these Hölz designs are one-point extensions of generalized quadrangles, we dedicate a final chapter to the characterization of the affine extension of H(2) using a combinatorial property

    Dualities and collineations of projective and polar spaces and of related geometries

    Get PDF

    Some contributions to incidence geometry and the polynomial method

    Get PDF
    corecore