2,547 research outputs found

    Krylov subspace split Bregman methods

    Get PDF
    Split Bregman methods are popular iterative methods for the solution of large-scale minimization problems that arise in image restoration and basis pursuit. This paper investigates the possibility of projecting large-scale problems into a Krylov subspace of fairly small dimension and solving the minimization problem in the latter subspace by a split Bregman algorithm. We are concerned with the restoration of images that have been contaminated by blur and Gaussian or impulse noise. Computed examples illustrate that the projected split Bregman methods described are fast and give computed solutions of high quality

    Impulsive noise removal from color images with morphological filtering

    Full text link
    This paper deals with impulse noise removal from color images. The proposed noise removal algorithm employs a novel approach with morphological filtering for color image denoising; that is, detection of corrupted pixels and removal of the detected noise by means of morphological filtering. With the help of computer simulation we show that the proposed algorithm can effectively remove impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics and processing speed with that of common successful algorithms.Comment: The 6th international conference on analysis of images, social networks, and texts (AIST 2017), 27-29 July, 2017, Moscow, Russi

    Consensus image method for unknown noise removal

    Get PDF
    Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.This work is supported by the European Commission under Contract No. 238819 (MIBISOC Marie Curie ITN). H. Bustince was supported by Project TIN 2010-15055 of the Spanish Ministry of Science

    Use of idempotent functions in the aggregation of different filters for noise removal

    Get PDF
    The majority of existing denoising algorithms obtain good results for a specific noise model, and when it is known previously. Nonetheless, there is a lack in denoising algorithms that can deal with any unknown noisy images. Therefore, in this paper, we study the use of aggregation functions for denoising purposes, where the noise model is not necessary known in advance; and how these functions affect the visual and quantitative results of the resultant images
    corecore