788 research outputs found

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    SIMDAT

    No full text

    An Overlay Architecture for Personalized Object Access and Sharing in a Peer-to-Peer Environment

    Get PDF
    Due to its exponential growth and decentralized nature, the Internet has evolved into a chaotic repository, making it difficult for users to discover and access resources of interest to them. As a result, users have to deal with the problem of information overload. The Semantic Web's emergence provides Internet users with the ability to associate explicit, self-described semantics with resources. This ability will facilitate in turn the development of ontology-based resource discovery tools to help users retrieve information in an efficient manner. However, it is widely believed that the Semantic Web of the future will be a complex web of smaller ontologies, mostly created by various groups of web users who share a similar interest, referred to as a Community of Interest. This thesis proposes a solution to the information overload problem using a user driven framework, referred to as a Personalized Web, that allows individual users to organize themselves into Communities of Interests based on ontologies agreed upon by all community members. Within this framework, users can define and augment their personalized views of the Internet by associating specific properties and attributes to resources and defining constraint-functions and rules that govern the interpretation of the semantics associated with the resources. Such views can then be used to capture the user's interests and integrate these views into a user-defined Personalized Web. As a proof of concept, a Personalized Web architecture that employs ontology-based semantics and a structured Peer-to-Peer overlay network to provide a foundation of semantically-based resource indexing and advertising is developed. In order to investigate mechanisms that support the resource advertising and retrieval of the Personalized Web architecture, three agent-driven advertising and retrieval schemes, the Aggressive scheme, the Crawler-based scheme, and the Minimum-Cover-Rule scheme, were implemented and evaluated in both stable and churn environments. In addition to the development of a Personalized Web architecture that deals with typical web resources, this thesis used a case study to explore the potential of the Personalized Web architecture to support future web service workflow applications. The results of this investigation demonstrated that the architecture can support the automation of service discovery, negotiation, and invocation, allowing service consumers to actualize a personalized web service workflow. Further investigation will be required to improve the performance of the automation and allow it to be performed in a secure and robust manner. In order to support the next generation Internet, further exploration will be needed for the development of a Personalized Web that includes ubiquitous and pervasive resources

    Adaptive service discovery on service-oriented and spontaneous sensor systems

    Get PDF
    Service-oriented architecture, Spontaneous networks, Self-organisation, Self-configuration, Sensor systems, Social patternsNatural and man-made disasters can significantly impact both people and environments. Enhanced effect can be achieved through dynamic networking of people, systems and procedures and seamless integration of them to fulfil mission objectives with service-oriented sensor systems. However, the benefits of integration of services will not be realised unless we have a dependable method to discover all required services in dynamic environments. In this paper, we propose an Adaptive and Efficient Peer-to-peer Search (AEPS) approach for dependable service integration on service-oriented architecture based on a number of social behaviour patterns. In the AEPS network, the networked nodes can autonomously support and co-operate with each other in a peer-to-peer (P2P) manner to quickly discover and self-configure any services available on the disaster area and deliver a real-time capability by self-organising themselves in spontaneous groups to provide higher flexibility and adaptability for disaster monitoring and relief

    Semantic-Based, Scalable, Decentralized and Dynamic Resource Discovery for Internet-Based Distributed System

    Get PDF
    Resource Discovery (RD) is a key issue in Internet-based distributed sytems such as grid. RD is about locating an appropriate resource/service type that matches the user's application requirements. This is very important, as resource reservation and task scheduling are based on it. Unfortunately, RD in grid is very challenging as resources and users are distributed, resources are heterogeneous in their platforms, status of the resources is dynamic (resources can join or leave the system without any prior notice) and most recently the introduction of a new type of grid called intergrid (grid of grids) with the use of multi middlewares. Such situation requires an RD system that has rich interoperability, scalability, decentralization and dynamism features. However, existing grid RD systems have difficulties to attain these features. Not only that, they lack the review and evaluation studies, which may highlight the gap in achieving the required features. Therefore, this work discusses the problem associated with intergrid RD from two perspectives. First, reviewing and classifying the current grid RD systems in such a way that may be useful for discussing and comparing them. Second, propose a novel RD framework that has the aforementioned required RD features. In the former, we mainly focus on the studies that aim to achieve interoperability in the first place, which are known as RD systems that use semantic information (semantic technology). In particular, we classify such systems based on their qualitative use of the semantic information. We evaluate the classified studies based on their degree of accomplishment of interoperability and the other RD requirements, and draw the future research direction of this field. Meanwhile in the latter, we name the new framework as semantic-based scalable decentralized dynamic RD. The framework further contains two main components which are service description, and service registration and discovery models. The earlier consists of a set of ontologies and services. Ontologies are used as a data model for service description, whereas the services are to accomplish the description process. The service registration is also based on ontology, where nodes of the service (service providers) are classified to some classes according to the ontology concepts, which means each class represents a concept in the ontology. Each class has a head, which is elected among its own class I nodes/members. Head plays the role of a registry in its class and communicates with I the other heads of the classes in a peer to peer manner during the discovery process. We further introduce two intelligent agents to automate the discovery process which are Request Agent (RA) and Description Agent (DA). Eaclj. node is supposed to have both agents. DA describes the service capabilities based on the ontology, and RA I carries the service requests based on the ontology as well. We design a service search I algorithm for the RA that starts the service look up from the class of request origin first, then to the other classes. We finally evaluate the performance of our framework ~ith extensive simulation experiments, the result of which confirms the effectiveness of the proposed system in satisfying the required RD features (interoperability, scalability, decentralization and dynamism). In short, our main contributions are outlined new key taxonomy for the semantic-based grid RD studies; an interoperable semantic description RD component model for intergrid services metadata representation; a semantic distributed registry architecture for indexing service metadata; and an agent-qased service search and selection algorithm. Vll

    Grid-based semantic integration of heterogeneous data resources : implementation on a HealthGrid

    Get PDF
    The semantic integration of geographically distributed and heterogeneous data resources still remains a key challenge in Grid infrastructures. Today's mainstream Grid technologies hold the promise to meet this challenge in a systematic manner, making data applications more scalable and manageable. The thesis conducts a thorough investigation of the problem, the state of the art, and the related technologies, and proposes an Architecture for Semantic Integration of Data Sources (ASIDS) addressing the semantic heterogeneity issue. It defines a simple mechanism for the interoperability of heterogeneous data sources in order to extract or discover information regardless of their different semantics. The constituent technologies of this architecture include Globus Toolkit (GT4) and OGSA-DAI (Open Grid Service Architecture Data Integration and Access) alongside other web services technologies such as XML (Extensive Markup Language). To show this, the ASIDS architecture was implemented and tested in a realistic setting by building an exemplar application prototype on a HealthGrid (pilot implementation). The study followed an empirical research methodology and was informed by extensive literature surveys and a critical analysis of the relevant technologies and their synergies. The two literature reviews, together with the analysis of the technology background, have provided a good overview of the current Grid and HealthGrid landscape, produced some valuable taxonomies, explored new paths by integrating technologies, and more importantly illuminated the problem and guided the research process towards a promising solution. Yet the primary contribution of this research is an approach that uses contemporary Grid technologies for integrating heterogeneous data resources that have semantically different. data fields (attributes). It has been practically demonstrated (using a prototype HealthGrid) that discovery in semantically integrated distributed data sources can be feasible by using mainstream Grid technologies, which have been shown to have some Significant advantages over non-Grid based approaches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore