143 research outputs found

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    Joint Strategy for LTE Resource Allocation: Multicast Subgrouping & Unicast Transmissions

    Get PDF
    La ponencia presentada en: XII Jornadas de Ingeniería Telemática (JITEL 2015), celebrada los días 14 al 16 de octubre de 2015, en Palma de Mallorca.Mobile broadband services are growing rapidly in the last few years due to the deployment of Long Term Evolution (LTE) cellular networks. Among them, multicast services can be provided using Evolved Multimedia Broadcast and Multicast Service (eMBMS), available with 3rd Generation Partnership Project (3GPP) release 9, which can deliver broadcast/multicast content using a single-frequency network mode. This means sending the same multimedia content to a mass audience within a specific area. The utilization of the Conventional Multicast Scheme (CMS) approach for multicast resource allocation presents intrinsic inefficiencies, because of the different channel conditions of the users which demand the service. This paper proposes a Joint Multicast Subgrouping and Unicast Transmissions (JMSUT) strategy for resource allocation, which consists of the use of the multicast and the unicast transmissions, by means of the subframes reserved by the LTE standard for each purpose, to deliver a multicast service. The goal of the JMSUT algorithm is to maximize the service throughput whereas it guarantees the fulfillment of the Quality of Service (QoS) requirements of every user. This paper solves the former maximization problem of the joint resource allocation; on the one hand, splitting the multicast resources into different subgroups that transmit the same content with different Modulation and Coding Scheme (MCS), and on the other hand, the users with worst channel conditions are served by means of the unicast transmissions.This work was supported in part by the Spanish Ministry of Economy and Competitiveness, National Plan for Scientific Research, Development and Technological Innovation (IN-NPACTO subprogram), LTExtreme project (IPT-2012-0525- 430000), and the project TEC2014-59255-C3-3-R (ELISA).Publicad

    Resource Allocation Management for Broadcast/Multicast Services

    Get PDF
    Ponencia presentada en: XXX Simposium Nacional de la Unión Científica Internacional de Radio, los dias 2 y 4 septiembre 2015, en Pamplona (españa).Video services are expected to become more than 70% of the mobile traffic in 2020. Broadcast and multicast service is the most efficient mechanism to deliver the same content to many users. Not only focusing on venue casting, but also distributing many other media such as software updates and breaking news, 5G broadcasting is a key driver to achieve the spectral efficiency needed for the 1,000 times traffic growth that is expected for the upcoming years. Improvements in some areas, such as resource allocation techniques for broadcast/multicast services, are needed. The utilization of the Conventional Multicast Scheme (CMS) approach for multicast resource allocation presents intrinsic inefficiencies, because of the different channel conditions of the users which demand the service. This paper presents some resource allocation strategies based on the use of multicast subgroups. We propose a multicast resource allocation algorithm including memory, which results in improvements of the service throughput at the time a high fairness among the users is guaranteed. In addition, an algorithm of joint resource allocation among multicast and unicast transmissions is developed. This strategy allows the system to take advantage of the subframes reserved for each purpose by the Long Term Evolution (LTE) standard, looking for the best joint allocation of the available resources, and results in important improvements in the service throughputThis work was supported in part by the Spanish Ministry of Economy and Competitiveness, National Plan for Scientific Research, Development and Technological Innovation (IN-NPACTO subprogram), LTExtreme project (IPT-2012-0525-430000), and the projects TEC2011-29006-C03-03 (GRE3NSYST) and TEC2014-59255-C3-3-R (ELISA).Publicad

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    LTE Network Enhancement for Vehicular Safety Communication

    Get PDF

    Multicast resource management for next generation mobile communication systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore