7,520 research outputs found

    Dynamic network slicing for multitenant heterogeneous cloud radio access networks

    Get PDF
    Multitenant cellular network slicing has been gaining huge interest recently. However, it is not well-explored under the heterogeneous cloud radio access network (H-CRAN) architecture. This paper proposes a dynamic network slicing scheme for multitenant H-CRANs, which takes into account tenants' priority, baseband resources, fronthaul and backhaul capacities, quality of service (QoS) and interference. The framework of the network slicing scheme consists of an upper-level, which manages admission control, user association and baseband resource allocation; and a lower-level, which performs radio resource allocation among users. Simulation results show that the proposed scheme can achieve a higher network throughput, fairness and QoS performance compared to several baseline schemes

    A resource allocation framework for network slicing

    Get PDF
    International audienceTelecommunication networks are converging to a massively distributed cloud infrastructure interconnected with software defined networks. In the envisioned architecture, services will be deployed flexibly and quickly as network slices. Our paper addresses a major bottleneck in this context, namely the challenge of computing the best resource provisioning for network slices in a robust and efficient manner. With tractability in mind, we propose a novel optimization framework which allows fine-grained resource allocation for slices both in terms of network bandwidth and cloud processing. The slices can be further provisioned and auto-scaled optimally based on a large class of utility functions in real-time. Furthermore, by tuning a slice-specific parameter, system designers can trade off traffic-fairness with computing-fairness to provide a mixed fairness strategy. We also propose an iterative algorithm based on the alternating direction method of multipliers (ADMM) that provably converges to the optimal resource allocation and we demonstrate the method’s fast convergence in a wide range of quasi-stationary and dynamic settings

    Network slice allocation for 5G V2X networks: A case study from framework to implementation and performance assessment

    Get PDF
    Empowered by the capabilities provided by fifth generation (5G) mobile communication systems, vehicle-to-everything (V2X) communication is heading from concept to reality. Given the nature of high-mobility and high-density for vehicle transportation, how to satisfy the stringent and divergent requirements for V2X communications such as ultra-low latency and ultra-high reliable connectivity appears as an unprecedented challenging task for network operators. As an enabler to tackle this problem, network slicing provides a power tool for supporting V2X communications over 5G networks. In this paper, we propose a network resource allocation framework which deals with slice allocation considering the coexistence of V2X communications with multiple other types of services. The framework is implemented in Python and we evaluate the performance of our framework based on real-life network deployment datasets from a 5G operator. Through extensive simulations, we explore the benefits brought by network slicing in terms of achieved data rates for V2X, blocking probability, and handover ratio through different combinations of traffic types. We also reveal the importance of proper resource splitting for slicing among V2X and other types of services when network traffic load in an area of interest and quality of service of end users are taken into account.publishedVersionPaid open acces

    Intelligent resource scheduling for 5G radio access network slicing

    Get PDF
    It is widely acknowledged that network slicing can tackle the diverse use cases and connectivity services of the forthcoming next-generation mobile networks (5G). Resource scheduling is of vital importance for improving resource-multiplexing gain among slices while meeting specific service requirements for radio access network (RAN) slicing. Unfortunately, due to the performance isolation, diversified service requirements, and network dynamics (including user mobility and channel states), resource scheduling in RAN slicing is very challenging. In this paper, we propose an intelligent resource scheduling strategy (iRSS) for 5G RAN slicing. The main idea of an iRSS is to exploit a collaborative learning framework that consists of deep learning (DL) in conjunction with reinforcement learning (RL). Specifically, DL is used to perform large time-scale resource allocation, whereas RL is used to perform online resource scheduling for tackling small time-scale network dynamics, including inaccurate prediction and unexpected network states. Depending on the amount of available historical traffic data, an iRSS can flexibly adjust the significance between the prediction and online decision modules for assisting RAN in making resource scheduling decisions. Numerical results show that the convergence of an iRSS satisfies online resource scheduling requirements and can significantly improve resource utilization while guaranteeing performance isolation between slices, compared with other benchmark algorithms

    Optimal Cross Slice Orchestration for 5G Mobile Services

    Full text link
    5G mobile networks encompass the capabilities of hosting a variety of services such as mobile social networks, multimedia delivery, healthcare, transportation, and public safety. Therefore, the major challenge in designing the 5G networks is how to support different types of users and applications with different quality-of-service requirements under a single physical network infrastructure. Recently, network slicing has been introduced as a promising solution to address this challenge. Network slicing allows programmable network instances which match the service requirements by using network virtualization technologies. However, how to efficiently allocate resources across network slices has not been well studied in the literature. Therefore, in this paper, we first introduce a model for orchestrating network slices based on the service requirements and available resources. Then, we propose a Markov decision process framework to formulate and determine the optimal policy that manages cross-slice admission control and resource allocation for the 5G networks. Through simulation results, we show that the proposed framework and solution are efficient not only in providing slice-as-a-service based on the service requirements, but also in maximizing the provider's revenue.Comment: 6 pages, 6 figures, WCNC 2018 conferenc
    corecore