941 research outputs found

    Detection of fraudulent financial papers by picking a collection of characteristics using optimization algorithms and classification techniques based on squirrels

    Full text link
    To produce important investment decisions, investors require financial records and economic information. However, most companies manipulate investors and financial institutions by inflating their financial statements. Fraudulent Financial Activities exist in any monetary or financial transaction scenario, whether physical or electronic. A challenging problem that arises in this domain is the issue that affects and troubles individuals and institutions. This problem has attracted more attention in the field in part owing to the prevalence of financial fraud and the paucity of previous research. For this purpose, in this study, the main approach to solve this problem, an anomaly detection-based approach based on a combination of feature selection based on squirrel optimization pattern and classification methods have been used. The aim is to develop this method to provide a model for detecting anomalies in financial statements using a combination of selected features with the nearest neighbor classifications, neural networks, support vector machine, and Bayesian. Anomaly samples are then analyzed and compared to recommended techniques using assessment criteria. Squirrel optimization's meta-exploratory capability, along with the approach's ability to identify abnormalities in financial data, has been shown to be effective in implementing the suggested strategy. They discovered fake financial statements because of their expertise

    Workload Prediction for Efficient Performance Isolation and System Reliability

    Get PDF
    In large-scaled and distributed systems, like multi-tier storage systems and cloud data centers, resource sharing among workloads brings multiple benefits while introducing many performance challenges. The key to effective workload multiplexing is accurate workload prediction. This thesis focuses on how to capture the salient characteristics of the real-world workloads to develop workload prediction methods and to drive scheduling and resource allocation policies, in order to achieve efficient and in-time resource isolation among applications. For a multi-tier storage system, high-priority user work is often multiplexed with low-priority background work. This brings the challenge of how to strike a balance between maintaining the user performance and maximizing the amount of finished background work. In this thesis, we propose two resource isolation policies based on different workload prediction methods: one is a Markovian model-based and the other is a neural networks-based. These policies aim at, via workload prediction, discovering the opportune time to schedule background work with minimum impact on user performance. Trace-driven simulations verify the efficiency of the two pro- posed resource isolation policies. The Markovian model-based policy successfully schedules the background work at the appropriate periods with small impact on the user performance. The neural networks-based policy adaptively schedules user and background work, resulting in meeting both performance requirements consistently. This thesis also proposes an accurate while efficient neural networks-based pre- diction method for data center usage series, called PRACTISE. Different from the traditional neural networks for time series prediction, PRACTISE selects the most informative features from the past observations of the time series itself. Testing on a large set of usage series in production data centers illustrates the accuracy (e.g., prediction error) and efficiency (e.g., time cost) of PRACTISE. The superiority of the usage prediction also allows a proactive resource management in the highly virtualized cloud data centers. In this thesis, we analyze on the performance tickets in the cloud data centers, and propose an active sizing algorithm, named ATM, that predicts the usage workloads and re-allocates capacity to work- loads to avoid VM performance tickets. Moreover, driven by cheap prediction of usage tails, we also present TailGuard in this thesis, which dynamically clones VMs among co-located boxes, in order to efficiently reduce the performance violations of physical boxes in cloud data centers
    • …
    corecore