4,337 research outputs found

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure

    A resolution principle for clauses with constraints

    Get PDF
    We introduce a general scheme for handling clauses whose variables are constrained by an underlying constraint theory. In general, constraints can be seen as quantifier restrictions as they filter out the values that can be assigned to the variables of a clause (or an arbitrary formulae with restricted universal or existential quantifier) in any of the models of the constraint theory. We present a resolution principle for clauses with constraints, where unification is replaced by testing constraints for satisfiability over the constraint theory. We show that this constrained resolution is sound and complete in that a set of clauses with constraints is unsatisfiable over the constraint theory if we can deduce a constrained empty clause for each model of the constraint theory, such that the empty clauses constraint is satisfiable in that model. We show also that we cannot require a better result in general, but we discuss certain tractable cases, where we need at most finitely many such empty clauses or even better only one of them as it is known in classical resolution, sorted resolution or resolution with theory unification

    Fragments of Frege's Grundgesetze and G\"odel's Constructible Universe

    Full text link
    Frege's Grundgesetze was one of the 19th century forerunners to contemporary set theory which was plagued by the Russell paradox. In recent years, it has been shown that subsystems of the Grundgesetze formed by restricting the comprehension schema are consistent. One aim of this paper is to ascertain how much set theory can be developed within these consistent fragments of the Grundgesetze, and our main theorem shows that there is a model of a fragment of the Grundgesetze which defines a model of all the axioms of Zermelo-Fraenkel set theory with the exception of the power set axiom. The proof of this result appeals to G\"odel's constructible universe of sets, which G\"odel famously used to show the relative consistency of the continuum hypothesis. More specifically, our proofs appeal to Kripke and Platek's idea of the projectum within the constructible universe as well as to a weak version of uniformization (which does not involve knowledge of Jensen's fine structure theory). The axioms of the Grundgesetze are examples of abstraction principles, and the other primary aim of this paper is to articulate a sufficient condition for the consistency of abstraction principles with limited amounts of comprehension. As an application, we resolve an analogue of the joint consistency problem in the predicative setting.Comment: Forthcoming in The Journal of Symbolic Logi

    On Generalizing Decidable Standard Prefix Classes of First-Order Logic

    Full text link
    Recently, the separated fragment (SF) of first-order logic has been introduced. Its defining principle is that universally and existentially quantified variables may not occur together in atoms. SF properly generalizes both the Bernays-Sch\"onfinkel-Ramsey (BSR) fragment and the relational monadic fragment. In this paper the restrictions on variable occurrences in SF sentences are relaxed such that universally and existentially quantified variables may occur together in the same atom under certain conditions. Still, satisfiability can be decided. This result is established in two ways: firstly, by an effective equivalence-preserving translation into the BSR fragment, and, secondly, by a model-theoretic argument. Slight modifications to the described concepts facilitate the definition of other decidable classes of first-order sentences. The paper presents a second fragment which is novel, has a decidable satisfiability problem, and properly contains the Ackermann fragment and---once more---the relational monadic fragment. The definition is again characterized by restrictions on the occurrences of variables in atoms. More precisely, after certain transformations, Skolemization yields only unary functions and constants, and every atom contains at most one universally quantified variable. An effective satisfiability-preserving translation into the monadic fragment is devised and employed to prove decidability of the associated satisfiability problem.Comment: 34 page

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators

    Deciding First-Order Satisfiability when Universal and Existential Variables are Separated

    Full text link
    We introduce a new decidable fragment of first-order logic with equality, which strictly generalizes two already well-known ones -- the Bernays-Sch\"onfinkel-Ramsey (BSR) Fragment and the Monadic Fragment. The defining principle is the syntactic separation of universally quantified variables from existentially quantified ones at the level of atoms. Thus, our classification neither rests on restrictions on quantifier prefixes (as in the BSR case) nor on restrictions on the arity of predicate symbols (as in the monadic case). We demonstrate that the new fragment exhibits the finite model property and derive a non-elementary upper bound on the computing time required for deciding satisfiability in the new fragment. For the subfragment of prenex sentences with the quantifier prefix ∃∗∀∗∃∗\exists^* \forall^* \exists^* the satisfiability problem is shown to be complete for NEXPTIME. Finally, we discuss how automated reasoning procedures can take advantage of our results.Comment: Extended version of our LICS 2016 conference paper, 23 page

    The logic of forbidden colours

    Get PDF
    The purpose of this paper is twofold: (1) to clarify Ludwig Wittgenstein’s thesis that colours possess logical structures, focusing on his ‘puzzle proposition’ that “there can be a bluish green but not a reddish green”, (2) to compare modeltheoretical and gametheoretical approaches to the colour exclusion problem. What is gained, then, is a new gametheoretical framework for the logic of ‘forbidden’ (e.g., reddish green and bluish yellow) colours. My larger aim is to discuss phenomenological principles of the demarcation of the bounds of logic as formal ontology of abstract objects
    • 

    corecore