2,905 research outputs found

    A Resolution Calculus for First-order Schemata

    No full text
    International audienceWe devise a resolution calculus that tests the satisfiability of infinite families of clause sets, called clause set schemata. For schemata of propositional clause sets, we prove that this calculus is sound, refutationally complete, and terminating. The calculus is extended to first-order clauses, for which termination is lost, since the satisfiability problem is not semi-decidable for nonpropositional schemata. The expressive power of the considered logic is strictly greater than the one considered in our previous work

    Integrating a Global Induction Mechanism into a Sequent Calculus

    Full text link
    Most interesting proofs in mathematics contain an inductive argument which requires an extension of the LK-calculus to formalize. The most commonly used calculi for induction contain a separate rule or axiom which reduces the valid proof theoretic properties of the calculus. To the best of our knowledge, there are no such calculi which allow cut-elimination to a normal form with the subformula property, i.e. every formula occurring in the proof is a subformula of the end sequent. Proof schemata are a variant of LK-proofs able to simulate induction by linking proofs together. There exists a schematic normal form which has comparable proof theoretic behaviour to normal forms with the subformula property. However, a calculus for the construction of proof schemata does not exist. In this paper, we introduce a calculus for proof schemata and prove soundness and completeness with respect to a fragment of the inductive arguments formalizable in Peano arithmetic.Comment: 16 page

    Schematic Cut elimination and the Ordered Pigeonhole Principle [Extended Version]

    Full text link
    In previous work, an attempt was made to apply the schematic CERES method [8] to a formal proof with an arbitrary number of {\Pi} 2 cuts (a recursive proof encapsulating the infinitary pigeonhole principle) [5]. However the derived schematic refutation for the characteristic clause set of the proof could not be expressed in the formal language provided in [8]. Without this formalization a Herbrand system cannot be algorithmically extracted. In this work, we provide a restriction of the proof found in [5], the ECA-schema (Eventually Constant Assertion), or ordered infinitary pigeonhole principle, whose analysis can be completely carried out in the framework of [8], this is the first time the framework is used for proof analysis. From the refutation of the clause set and a substitution schema we construct a Herbrand system.Comment: Submitted to IJCAR 2016. Will be a reference for Appendix material in that paper. arXiv admin note: substantial text overlap with arXiv:1503.0855

    Generating Schemata of Resolution Proofs

    Full text link
    Two distinct algorithms are presented to extract (schemata of) resolution proofs from closed tableaux for propositional schemata. The first one handles the most efficient version of the tableau calculus but generates very complex derivations (denoted by rather elaborate rewrite systems). The second one has the advantage that much simpler systems can be obtained, however the considered proof procedure is less efficient

    On Automating the Doctrine of Double Effect

    Full text link
    The doctrine of double effect (DDE\mathcal{DDE}) is a long-studied ethical principle that governs when actions that have both positive and negative effects are to be allowed. The goal in this paper is to automate DDE\mathcal{DDE}. We briefly present DDE\mathcal{DDE}, and use a first-order modal logic, the deontic cognitive event calculus, as our framework to formalize the doctrine. We present formalizations of increasingly stronger versions of the principle, including what is known as the doctrine of triple effect. We then use our framework to simulate successfully scenarios that have been used to test for the presence of the principle in human subjects. Our framework can be used in two different modes: One can use it to build DDE\mathcal{DDE}-compliant autonomous systems from scratch, or one can use it to verify that a given AI system is DDE\mathcal{DDE}-compliant, by applying a DDE\mathcal{DDE} layer on an existing system or model. For the latter mode, the underlying AI system can be built using any architecture (planners, deep neural networks, bayesian networks, knowledge-representation systems, or a hybrid); as long as the system exposes a few parameters in its model, such verification is possible. The role of the DDE\mathcal{DDE} layer here is akin to a (dynamic or static) software verifier that examines existing software modules. Finally, we end by presenting initial work on how one can apply our DDE\mathcal{DDE} layer to the STRIPS-style planning model, and to a modified POMDP model.This is preliminary work to illustrate the feasibility of the second mode, and we hope that our initial sketches can be useful for other researchers in incorporating DDE in their own frameworks.Comment: 26th International Joint Conference on Artificial Intelligence 2017; Special Track on AI & Autonom

    Security policy refinement using data integration: a position paper.

    No full text
    In spite of the wide adoption of policy-based approaches for security management, and many existing treatments of policy verification and analysis, relatively little attention has been paid to policy refinement: the problem of deriving lower-level, runnable policies from higher-level policies, policy goals, and specifications. In this paper we present our initial ideas on this task, using and adapting concepts from data integration. We take a view of policies as governing the performance of an action on a target by a subject, possibly with certain conditions. Transformation rules are applied to these components of a policy in a structured way, in order to translate the policy into more refined terms; the transformation rules we use are similar to those of global-as-view database schema mappings, or to extensions thereof. We illustrate our ideas with an example. Copyright 2009 ACM
    • …
    corecore