100 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Access Control in Wireless Sensor Networks

    Full text link
    Wireless sensor networks consist of a large amount of sensor nodes, small low-cost wireless computing devices equipped with different sensors. Sensor networks collect and process environmental data and can be used for habitat monitoring, precision agriculture, wildfire detection, structural health monitoring and many other applications. Securing sensor networks calls for novel solutions, especially because of their unattended deployment and strong resource limitations. Moreover, developing security solutions without knowing precisely against what threats the system should be protected is impossible. Thus, the first task in securing sensor networks is to define a realistic adversary model. We systematically investigate vulnerabilities in sensor networks, specifically focusing on physical attacks on sensor node hardware. These are all attacks that require direct physical access to the sensor nodes. Most severe attacks of this kind are also known as node capture, or node compromise. Based on the vulnerability analysis, we present a novel general adversary model for sensor networks. If the data collected within a sensor network is valuable or should be kept confidential then the data should be protected from unauthorized access. We determine security issues in the context of access control in sensor networks in presence of node capture attacks and develop protocols for broadcast authentication that constitute the core of our solutions for access control. We develop broadcast authentication protocols for the case where the adversary can capture up to some threshold t sensor nodes. The developed protocols offer absolute protection while not more than t nodes are captured, but their security breaks completely otherwise. Moreover, security in this case comes at a high cost, as the resource requirements for the protocols grow rapidly with t. One of the most popular ways to overcome impossibility or inefficiency of solutions in distributed systems is to make the protocol goals probabilistic. We therefore develop efficient probabilistic protocols for broadcast authentication. Security of these protocols degrades gracefully with the increasing number of captured nodes. We conclude that the perfect threshold security is less appropriate for sensor networks than the probabilistic approach. Gracefully degrading security offers better scalability and saves resources, and should be considered as a promising security paradigm for sensor networks
    • …
    corecore