17 research outputs found

    Robust Learning Enabled Intelligence for the Internet-of-Things: A Survey From the Perspectives of Noisy Data and Adversarial Examples

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe Internet-of-Things (IoT) has been widely adopted in a range of verticals, e.g., automation, health, energy and manufacturing. Many of the applications in these sectors, such as self-driving cars and remote surgery, are critical and high stakes applications, calling for advanced machine learning (ML) models for data analytics. Essentially, the training and testing data that are collected by massive IoT devices may contain noise (e.g., abnormal data, incorrect labels and incomplete information) and adversarial examples. This requires high robustness of ML models to make reliable decisions for IoT applications. The research of robust ML has received tremendous attentions from both academia and industry in recent years. This paper will investigate the state-of-the-art and representative works of robust ML models that can enable high resilience and reliability of IoT intelligence. Two aspects of robustness will be focused on, i.e., when the training data of ML models contains noises and adversarial examples, which may typically happen in many real-world IoT scenarios. In addition, the reliability of both neural networks and reinforcement learning framework will be investigated. Both of these two machine learning paradigms have been widely used in handling data in IoT scenarios. The potential research challenges and open issues will be discussed to provide future research directions.Engineering and Physical Sciences Research Council (EPSRC

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Advances on Smart Cities and Smart Buildings

    Get PDF
    Modern cities are facing the challenge of combining competitiveness at the global city scale and sustainable urban development to become smart cities. A smart city is a high-tech, intensive and advanced city that connects people, information, and city elements using new technologies in order to create a sustainable, greener city; competitive and innovative commerce; and an increased quality of life. This Special Issue collects the recent advancements in smart cities and covers different topics and aspects
    corecore