2,465 research outputs found

    Energy-aware Scheduling of Surveillance in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity

    CIR Parametric Rules Precocity For Ranging Error Mitigation In IR-UWB

    Get PDF
    The cutting-edge technology to support high ranging accuracy within the indoor environment is Impulse Radio Ultra Wide Band (IR-UWB) standard. Besides accuracy, IR-UWB’s low-complex architecture and low power consumption align well with mobile devices. A prime challenge in indoor IR-UWB based localization is to achieve a position accuracy under non-line-of-sight (NLOS) and multipath propagation (MPP) conditions. Another challenge is to achieve acceptable accuracy in the conditions mentioned above without any significant increase in latency and computational burden. This dissertation proposes a solution for addressing the accuracy and reliability problem of indoor localization system satisfying acceptable delay or computational complexity overhead. The proposed methodology is based on rules for identification of line-of-sight (LOS) and NLOS and the range error bias estimation and correction due to NLOS and MPP conditions. The proposed methodology provides accuracy for two major application domains, namely, wireless sensor networks (WSNs) and indoor tracking and navigation (ITN). This dissertation offers two different solutions for the localization problem. The first solution is a rules-based classification of LOS / NLOS and geometric-based range correction for WSN. In the first solution, the Boolean logic based classification is designed for identification of LOS/NLOS. The logic is based on channel impulse response (CIR) parameters. The second solution is based on fuzzy logic. The fuzzy based solution is appealing well for the stringent precision requirements in ITN. In this solution, the parametric Boolean logic from the first solution is converted and expanded into rules. These rules are implemented into a fuzzy logic based mechanism for designing a fuzzy inference system. The system estimates the ranging errors and correcting unmitigated ranges. The expanded rules and designed methodology are based on theoretical analysis and empirical observations of the parameters. The rules accommodate the parameters uncertainties for estimating the ranging error through the relationship between the input parameters uncertainties and ranging error using fuzzy inference mechanism. The proposed solutions are evaluated using real-world measurements in different indoor environments. The performance of the proposed solutions is also evaluated in terms of true classification rate, residual ranging errors’ cumulative distributions and probability density distributions, as well as outage probabilities. Evaluation results show that the true classification rate is more than 95%. Moreover, using the proposed fuzzy logic based solution, the residual errors convergence of 90% is attained for error threshold of 10 cm, and the reliability of the localization system is also more than 90% for error threshold of 15 cm

    Adaptive AOA-Aided TOA Self-Positioning for Mobile Wireless Sensor Networks

    Get PDF
    Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation

    Ibeacon based proximity and indoor localization system

    Get PDF
    User location can be leveraged to provide a wide range of services in a variety of indoor locations including retails stores, hospitals, airports, museums and libraries etc. The widescale proliferation of user devices such as smart phones and the interconnectivity among different entities, powered by Internet of Things (IoT), makes user device-based localization a viable approach to provide Location Based Services (LBS). Location based services can be broadly classified into 1) Proximity based services that provides services based on a rough estimate of users distance to any entity, and 2) Indoor localization that locates a user\u27s exact location in the indoor environment rather than a rough estimate of the distance. The primary requirements of these services are higher energy efficiency, localization accuracy, wide reception range, low cost and availability. Technologies such as WiFi, Radio Frequency Identification (RFID) and Ultra Wideband (UWB) have been used to provide both indoor localization and proximity based services. Since these technologies are not primarily intended for LBS, they do not fulfill the aforementioned requirements. Bluetooth Low Energy (BLE) enabled beacons that use Apple\u27s proprietary iBeacon protocol are mainly intended to provide proximity based services. iBeacons satisfy the energy efficiency, wide reception range and availability requirements of LBS. However, iBeacons are prone to noise due to their reliance on Received Signal Strength Indicator (RSSI), which drastically fluctuates in indoor environments due to interference from different obstructions. This limits its proximity detection accuracy. In this thesis, we present an iBeacon based proximity and indoor localization system. We present our two server-based algorithms to improve the proximity detection accuracy by reducing the variation in the RSSI and using the RSSI-estimated distance, rather than the RSSI itself, for proximity classification. Our algorithms Server-side Running Average and Server-side Kalman Filter improves the proximity detection accuracy by 29% and 32% respectively in contrast to Apple\u27s current approach of using moving average of RSSI values for proximity classification. We utilize a server-based approach because of the greater computing power of servers. Furthermore, server-based approach helps reduce the energy consumption of user device. We describe our cloud based architecture for iBeacon based proximity detection. We also use iBeacons for indoor localization. iBeacons are not primarily intended for indoor localization as their reliance on RSSI makes them unsuitable for accurate indoor localization. To improve the localization accuracy, we use Bayesian filtering algorithms such as Particle Filter (PF), Kalman Filter (KF), and Extended Kalman Filter (EKF). We show that by cascading Kalman Filter and Extended Kalman Filter with Particle Filter, the indoor localization accuracy can be improved by 28% and 33.94% respectively when compared with only using PF. The PF, KFPF and PFEKF algorithm on the server side have average localization error of 1.441 meters, 1.0351 meters and 0.9519 meters respectively

    Genetic Algorithm based Cluster Head Selection for Optimimized Communication in Wireless Sensor Network

    Get PDF
    Wireless Sensor Network (WSNs) utilizes conveyed gadgets sensors for observing physical or natural conditions. It has been given to the steering conventions which may contrast contingent upon the application and system design. Vitality administration in WSN is of incomparable significance for the remotely sent vitality sensor hubs. The hubs can be obliged in the little gatherings called the Clusters. Clustering is done to accomplish the vitality effectiveness and the versatility of the system. Development of the group likewise includes the doling out the part to the hub based on their borders. In this paper, a novel strategy for cluster head selection based on Genetic Algorithm (GA) has been proposed. Every person in the GA populace speaks to a conceivable answer for the issue. Discovering people who are the best proposals to the enhancement issue and join these people into new people is a critical phase of the transformative procedure. The Cluster Head (CH) is picked using the proposed technique Genetic Algorithm based Cluster Head (GACH). The performance of the proposed system GACH has been compared with Particle Swarm Optimization Cluster Head (PSOCH). Simulations have been conducted with 14 wireless sensor nodes scattered around 8 kilometers. Results proves that GACH outperforms than PSOCH in terms of throughput, packet delivery ratio and energy efficiency

    Underwater localization and node mobility estimation

    Get PDF
    In this paper, localizing a moving node in the context of underwater wireless sensor networks (UWSNs) is considered. Most existing algorithms have had designed to work with a static node in the networks. However, in practical case, the node is dynamic due to relative motion between the transmitter and receiver. The main idea is to record the time of arrival message (ToA) stamp and estimating the drift in the sampling frequency accordingly. It should be emphasized that, the channel conditions such as multipath and delay spread, and ambient noise is considered to make the system pragmatic. A joint prediction of the node mobility and speed are estimated based on the sampling frequency offset estimation. This sampling frequency offset drift is detected based on correlating an anticipated window in the orthogonal frequency division multiplexing (OFDM) of the received packet. The range and the distance of the mobile node is predicted from estimating the speed at the received packet and reused in the position estimation algorithm. The underwater acoustic channel is considered in this paper with 8 paths and maximum delay spread of 48 ms to simulate a pragmatic case. The performance is evaluated by adopting different nodes speeds in the simulation in two scenarios of expansion and compression. The results show that the proposed algorithm has a stable profile in the presence of severe channel conditions. Also, the result shows that the maximum speed that can be adopted in this algorithm is 9 km/h and the expansion case profile is more stable than the compression scenario. In addition, a comparison with a dynamic triangular algorithm (DTN) is presented in order to evaluate the proposed system

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv
    corecore