9,282 research outputs found

    Robotics Software Engineering: A Perspective from the Service Robotics Domain

    Full text link
    Robots that support humans by performing useful tasks (a.k.a., service robots) are booming worldwide. In contrast to industrial robots, the development of service robots comes with severe software engineering challenges, since they require high levels of robustness and autonomy to operate in highly heterogeneous environments. As a domain with critical safety implications, service robotics faces a need for sound software development practices. In this paper, we present the first large-scale empirical study to assess the state of the art and practice of robotics software engineering. We conducted 18 semi-structured interviews with industrial practitioners working in 15 companies from 9 different countries and a survey with 156 respondents (from 26 countries) from the robotics domain. Our results provide a comprehensive picture of (i) the practices applied by robotics industrial and academic practitioners, including processes, paradigms, languages, tools, frameworks, and reuse practices, (ii) the distinguishing characteristics of robotics software engineering, and (iii) recurrent challenges usually faced, together with adopted solutions. The paper concludes by discussing observations, derived hypotheses, and proposed actions for researchers and practitioners.Comment: 11 pages + 1 page for references, 3 figures, 3 tables, in proceedings of ESEC/FSE 202

    Coalition Battle Management Language (C-BML) Study Group Final Report

    Get PDF
    Interoperability across Modeling and Simulation (M&S) and Command and Control (C2) systems continues to be a significant problem for today\u27s warfighters. M&S is well-established in military training, but it can be a valuable asset for planning and mission rehearsal if M&S and C2 systems were able to exchange information, plans, and orders more effectively. To better support the warfighter with M&S based capabilities, an open standards-based framework is needed that establishes operational and technical coherence between C2 and M&S systems

    A framework to support human factors of automation in railway intelligent infrastructure

    Get PDF
    Technological and organisational advances have increased the potential for remote access and proactive monitoring of the infrastructure in various domains and sectors – water and sewage, oil and gas and transport. Intelligent Infrastructure (II) is an architecture that potentially enables the generation of timely and relevant information about the state of any type of infrastructure asset, providing a basis for reliable decision-making. This paper reports an exploratory study to understand the concepts and human factors associated with II in the railway, largely drawing from structured interviews with key industry decision-makers and attachment to pilot projects. Outputs from the study include a data-processing framework defining the key human factors at different levels of the data structure within a railway II system and a system-level representation. The framework and other study findings will form a basis for human factors contributions to systems design elements such as information interfaces and role specifications

    Anytime Point-Based Approximations for Large POMDPs

    Full text link
    The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with point-based value backups to form an effective anytime POMDP algorithm called Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks

    Informative Path Planning for Active Field Mapping under Localization Uncertainty

    Full text link
    Information gathering algorithms play a key role in unlocking the potential of robots for efficient data collection in a wide range of applications. However, most existing strategies neglect the fundamental problem of the robot pose uncertainty, which is an implicit requirement for creating robust, high-quality maps. To address this issue, we introduce an informative planning framework for active mapping that explicitly accounts for the pose uncertainty in both the mapping and planning tasks. Our strategy exploits a Gaussian Process (GP) model to capture a target environmental field given the uncertainty on its inputs. For planning, we formulate a new utility function that couples the localization and field mapping objectives in GP-based mapping scenarios in a principled way, without relying on any manually tuned parameters. Extensive simulations show that our approach outperforms existing strategies, with reductions in mean pose uncertainty and map error. We also present a proof of concept in an indoor temperature mapping scenario.Comment: 8 pages, 7 figures, submission (revised) to Robotics & Automation Letters (and IEEE International Conference on Robotics and Automation

    Software variability in service robotics

    Get PDF
    Robots artificially replicate human capabilities thanks to their software, the main embodiment of intelligence. However, engineering robotics software has become increasingly challenging. Developers need expertise from different disciplines as well as they are faced with heterogeneous hardware and uncertain operating environments. To this end, the software needs to be variable—to customize robots for different customers, hardware, and operating environments. However, variability adds substantial complexity and needs to be managed—yet, ad hoc practices prevail in the robotics domain, challenging effective software reuse, maintenance, and evolution. To improve the situation, we need to enhance our empirical understanding of variability in robotics. We present a multiple-case study on software variability in the vibrant and challenging domain of service robotics. We investigated drivers, practices, methods, and challenges of variability from industrial companies building service robots. We analyzed the state-of-the-practice and the state-of-the-art—the former via an experience report and eleven interviews with two service robotics companies; the latter via a systematic literature review. We triangulated from these sources, reporting observations with actionable recommendations for researchers, tool providers, and practitioners. We formulated hypotheses trying to explain our observations, and also compared the state-of-the-art from the literature with the-state-of-the-practice we observed in our cases. We learned that the level of abstraction in robotics software needs to be raised for simplifying variability management and software integration, while keeping a sufficient level of customization to boost efficiency and effectiveness in their robots’ operation. Planning and realizing variability for specific requirements and implementing robust abstractions permit robotic applications to operate robustly in dynamic environments, which are often only partially known and controllable. With this aim, our companies use a number of mechanisms, some of them based on formalisms used to specify robotic behavior, such as finite-state machines and behavior trees. To foster software reuse, the service robotics domain will greatly benefit from having software components—completely decoupled from hardware—with harmonized and standardized interfaces, and organized in an ecosystem shared among various companies
    • …
    corecore