70,944 research outputs found

    Asymptotically idempotent aggregation operators for trust management in multi-agent systems

    Get PDF
    The study of trust management in multi-agent system, especially distributed, has grown over the last years. Trust is a complex subject that has no general consensus in literature, but has emerged the importance of reasoning about it computationally. Reputation systems takes into consideration the history of an entity’s actions/behavior in order to compute trust, collecting and aggregating ratings from members in a community. In this scenario the aggregation problem becomes fundamental, in particular depending on the environment. In this paper we describe a technique based on a class of asymptotically idempotent aggregation operators, suitable particulary for distributed anonymous environments

    Partner Selection for the Emergence of Cooperation in Multi-Agent Systems Using Reinforcement Learning

    Get PDF
    Social dilemmas have been widely studied to explain how humans are able to cooperate in society. Considerable effort has been invested in designing artificial agents for social dilemmas that incorporate explicit agent motivations that are chosen to favor coordinated or cooperative responses. The prevalence of this general approach points towards the importance of achieving an understanding of both an agent's internal design and external environment dynamics that facilitate cooperative behavior. In this paper, we investigate how partner selection can promote cooperative behavior between agents who are trained to maximize a purely selfish objective function. Our experiments reveal that agents trained with this dynamic learn a strategy that retaliates against defectors while promoting cooperation with other agents resulting in a prosocial society.Comment:

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Learning to Reach Agreement in a Continuous Ultimatum Game

    Full text link
    It is well-known that acting in an individually rational manner, according to the principles of classical game theory, may lead to sub-optimal solutions in a class of problems named social dilemmas. In contrast, humans generally do not have much difficulty with social dilemmas, as they are able to balance personal benefit and group benefit. As agents in multi-agent systems are regularly confronted with social dilemmas, for instance in tasks such as resource allocation, these agents may benefit from the inclusion of mechanisms thought to facilitate human fairness. Although many of such mechanisms have already been implemented in a multi-agent systems context, their application is usually limited to rather abstract social dilemmas with a discrete set of available strategies (usually two). Given that many real-world examples of social dilemmas are actually continuous in nature, we extend this previous work to more general dilemmas, in which agents operate in a continuous strategy space. The social dilemma under study here is the well-known Ultimatum Game, in which an optimal solution is achieved if agents agree on a common strategy. We investigate whether a scale-free interaction network facilitates agents to reach agreement, especially in the presence of fixed-strategy agents that represent a desired (e.g. human) outcome. Moreover, we study the influence of rewiring in the interaction network. The agents are equipped with continuous-action learning automata and play a large number of random pairwise games in order to establish a common strategy. From our experiments, we may conclude that results obtained in discrete-strategy games can be generalized to continuous-strategy games to a certain extent: a scale-free interaction network structure allows agents to achieve agreement on a common strategy, and rewiring in the interaction network greatly enhances the agents ability to reach agreement. However, it also becomes clear that some alternative mechanisms, such as reputation and volunteering, have many subtleties involved and do not have convincing beneficial effects in the continuous case
    • …
    corecore