933 research outputs found

    A novel soft computing approach based on FIR to model and predict energy dynamic systems

    Get PDF
    Tesi en modalitat compendi de publicacionsWe are facing a global climate crisis that is demanding a change in the status quo of how we produce, distribute and consume energy. In the last decades, this is being redefined through Smart Grids(SG), an intelligent electrical network more observable, controllable, automated, fully integrated with energy services and the end-users. Most of the features and proposed SG scenarios are based on reliable, robust and fast energy predictions. For instance, for proper planning activities, such as generation, purchasing, maintenance and investment; for demand side management, like demand response programs; for energy trading, especially at local level, where productions and consumptions are more stochastics and dynamic; better forecasts also increase grid stability and thus supply security. A large variety of Artificial Intelligence(AI) techniques have been applied in the field of Short-term electricity Load Forecasting(SLF) at consumer level in low-voltage system, showing a better performance than classical techniques. Inaccuracy or failure in the SLF process may be translated not just in a non-optimal (low prediction accuracy) solution but also in frustration of end-users, especially in new services and functionalities that empower citizens. In this regard, some limitations have been observed in energy forecasting models based on AI such as robustness, reliability, accuracy and computation in the edge. This research proposes and develops a new version of Fuzzy Inductive Reasoning(FIR), called Flexible FIR, to model and predict the electricity consumption of an entity in the low-voltage grid with high uncertainties, and information missing, as well as the capacity to be deployed either in the cloud or locally in a new version of Smart Meters(SMs) based on Edge Computing(EC). FIR has been proved to be a powerful approach for model identification and system ’s prediction over dynamic and complex processes in different real world domains but not yet in the energy domain. Thus, the main goal of this thesis is to demonstrate that a new version of FIR, more robust, reliable and accurate can be a referent Soft Computing(SC) methodology to model and predict dynamic systems in the energy domain and that it is scalable to an EC integration. The core developments of Flexible FIR have been an algorithm that can cope with missing information in the input values, as well as learn from instances with Missing Values(MVs) in the knowledge-based, without compromising significantly the accuracy of the predictions. Moreover, Flexible FIR comes with new forecasting strategies that can cope better with loss of causality of a variable and dispersion of output classes than classical k nearest neighbours, making the FIR forecasting process more reliable and robust. Furthermore, Flexible FIR addresses another major challenge modelling with SC techniques, which is to select best model parameters. One of the most important parameters in FIR is the number k of nearest neighbours to be used in the forecast process. The challenge to select the optimal k, dynamically, is addressed through an algorithm, called KOS(K nearest neighbour Optimal Selection), which has been developed and tested also with real world data. It computes a membership aggregation function of all the neighbours with respect their belonging to the output classes.While with KOS the optimal parameter k is found online, with other approaches such as genetic algorithms or reinforcement learning is not, which increases the computational time.Ens trobem davant una crisis climàtica global que exigeix un canvi al status quo de la manera que produïm, distribuïm i consumim energia. En les darreres dècades, està sent redefinit gràcies a les xarxa elèctriques intel·ligents(SG: Smart Grid) amb millor observabilitat, control, automatització, integrades amb nous serveis energètics i usuaris finals. La majoria de les funcionalitats i escenaris de les SG es basen en prediccions de la càrrega elèctrica confiables, robustes i ràpides. Per les prediccions de càrregues elèctriques a curt termini(SLF: Short-term electricity Load Forecasting), a nivell de consumidors al baix voltatge, s’han aplicat una gran varietat de tècniques intel·ligència Artificial(IA) mostrant millor rendiment que tècniques estadístiques tradicionals. Un baix rendiment en SLF, pot traduir-se no només en una solució no-òptima (baixa precisió de predicció) sinó també en la frustració dels usuaris finals, especialment en nous serveis i funcionalitats que empoderarien als ciutadans. En el marc d’aquesta investigació es proposa i desenvolupa una nova versió de la metodologia del Raonament Inductiu Difús(FIR: Fuzzy Inductive Reasoning), anomenat Flexible FIR, capaç de modelar i predir el consum d’electricitat d’una entitat amb un grau d’incertesa molt elevat, inclús amb importants carències d’informació (missing values). A més, Flexible FIR té la capacitat de desplegar-se al núvol, així como localment, en el que podria ser una nova versió de Smart Meters (SM) basada en tecnologia d’Edge Computing (EC). FIR ja ha demostrat ser una metodologia molt potent per la generació de models i prediccions en processos dinàmics en diferents àmbits, però encara no en el de l’energia. Per tant, l’objectiu principal d’aquesta tesis és demostrar que una versió millorada de FIR, més robusta, fiable i precisa pot consolidar-se com una metodologia Soft Computing SC) de referencia per modelar i predir sistemes dinàmics en aplicacions per al sector de l’energia i que és escalable a una integració d’EC. Les principals millores de Flexible FIR han estat, en primer lloc, el desenvolupament i test d’un algorisme capaç de processar els valors d’entrada d’un model FIR tot i que continguin Missing Values (MV). Addicionalment, aquest algorisme també permet aprendre d’instàncies amb MV en la matriu de coneixement d’un model FIR, sense comprometre de manera significativa la precisió de les prediccions. En segon lloc, s’han desenvolupat i testat noves estratègies per a la fase de predicció, comportant-se millor que els clàssics k veïns més propers quan ens trobem amb pèrdua de causalitat d’una variable i dispersió en les classes de sortida, aconseguint un procés d’aprenentatge i predicció més confiable i robust. En tercer lloc, Flexible FIR aborda un repte molt comú en tècniques de SC: l’òptima parametrització del model. En FIR, un dels paràmetres més determinants és el número k de veïns més propers que s’utilitzaran durant la fase de predicció. La selecció del millor valor de k es planteja de manera dinàmica a través de l’algorisme KOS (K nearest neighbour Optimal Selection) que s’ha desenvolupat i testat també amb dades reals. Mentre que amb KOS el paràmetre òptim de k es calcula online, altres enfocaments mitjançant algoritmes genètics o aprenentatge per reforç el càlcul és offline, incrementant significativament el temps de resposta, sent a més a més difícil la implantació en escenaris d’EC. Aquestes millores fan que Flexible FIR es pugui adaptar molt bé en aplicacions d’EC. En aquest sentit es proposa el concepte d’un SM de segona generació basat en EC, que integra Flexible FIR com mòdul de predicció d’electricitat executant-se en el propi dispositiu i un agent EC amb capacitat per el trading d'energia produïda localment. Aquest agent executa un innovador mecanisme basat en incentius, anomenat NRG-X-Change que utilitza una nova moneda digital descentralitzada per l’intercanvi d’energia, que s’anomena NRGcoin.Estamos ante una crisis climática global que exige un cambio del status quo de la manera que producimos, distribuimos y consumimos energía. En las últimas décadas, este status quo está siendo redefinido debido a: la penetración de las energías renovables y la generación distribuida; nuevas tecnologías como baterías y paneles solares con altos rendimientos; y la forma en que se consume la energía, por ejemplo, a través de vehículos eléctricos o con la electrificación de los hogares. Estas palancas requieren una red eléctrica inteligente (SG: Smart Grid) con mayor observabilidad, control, automatización y que esté totalmente integrada con nuevos servicios energéticos, así como con sus usuarios finales. La mayoría de las funcionalidades y escenarios de las redes eléctricas inteligentes se basan en predicciones de la energía confiables, robustas y rápidas. Por ejemplo, para actividades de planificación como la generación, compra, mantenimiento e inversión; para la gestión de la demanda, como los programas de demand response; en el trading de electricidad, especialmente a nivel local, donde las producciones y los consumos son más estocásticos y dinámicos; una mejor predicción eléctrica también aumenta la estabilidad de la red y, por lo tanto, mejora la seguridad. Para las predicciones eléctricas a corto plazo (SLF: Short-term electricity Load Forecasting), a nivel de consumidores en el bajo voltaje, se han aplicado una gran variedad de técnicas de Inteligencia Artificial (IA) mostrando mejor rendimiento que técnicas estadísticas convencionales. Un bajo rendimiento en los modelos predictivos, puede traducirse no solamente en una solución no-óptima (baja precisión de predicción) sino también en frustración de los usuarios finales, especialmente en nuevos servicios y funcionalidades que empoderan a los ciudadanos. En este sentido, se han identificado limitaciones en modelos de predicción de energía basados en IA, como la robustez, fiabilidad, precisión i computación en el borde. En el marco de esta investigación se propone y desarrolla una nueva versión de la metodología de Razonamiento Inductivo Difuso (FIR: Fuzzy Inductive Reasoning), que hemos llamado Flexible FIR, capaz de modelar y predecir el consumo de electricidad de una entidad con altos grados de incertidumbre e incluso con importantes carencias de información (missing values). Además, Flexible FIR tiene la capacidad de desplegarse en la nube, así como localmente, en lo que podría ser una nueva versión de Smart Meters (SM) basada en tecnología de Edge Computing (EC). En el pasado, ya se ha demostrado que FIR es una metodología muy potente para la generación de modelos y predicciones en procesos dinámicos, sin embargo, todavía no ha sido demostrado en el campo de la energía. Por tanto, el objetivo principal de esta tesis es demostrar que una versión mejorada de FIR, más robusta, fiable y precisa puede consolidarse como metodología Soft Computing (SC) de referencia para modelar y predecir sistemas dinámicos en aplicaciones para el sector de la energía y que es escalable hacia una integración de EC. Las principales mejoras en Flexible FIR han sido, en primer lugar, el desarrollo y testeo de un algoritmo capaz de procesar los valores de entrada en un modelo FIR a pesar de que contengan Missing Values (MV). Además, dicho algoritmo también permite aprender de instancias con MV en la matriz de conocimiento de un modelo FIR, sin comprometer de manera significativa la precisión de las predicciones. En segundo lugar, se han desarrollado y testeado nuevas estrategias para la fase de predicción de un modelo FIR, comportándose mejor que los clásicos k vecinos más cercanos ante la pérdida de causalidad de una variable y dispersión de clases de salida, consiguiendo un proceso de aprendizaje y predicción más confiable y robusto. En tercer lugar, Flexible FIR aborda un desafío muy común en técnicas de SC: la óptima parametrización del modelo. En FIR, uno de los parámetros más determinantes es el número k de vecinos más cercanos que se utilizarán en la fase de predicción. La selección del mejor valor de k se plantea de manera dinámica a través del algoritmo KOS (K nearest neighbour Optimal Selection) que se ha desarrollado y probado también con datos reales. Dicho algoritmo calcula una función de membresía agregada, de todos los vecinos, con respecto a su pertenencia a las clases de salida. Mientras que con KOS el parámetro óptimo de k se calcula online, otros enfoques mediante algoritmos genéticos o aprendizaje por refuerzo, el cálculo es offline incrementando significativamente el tiempo de respuesta, siendo además difícil su implantación en escenarios de EC. Estas mejoras hacen que Flexible FIR se adapte muy bien en aplicaciones de EC, en las que la analítica de datos en streaming debe ser fiable, robusta y con un modelo suficientemente ligero para ser ejecutado en un IoT Gateway o dispositivos más pequeños. También, en escenarios con poca conectividad donde el uso de la computación en la nube es limitado y los parámetros del modelo se calculan localmente. Con estas premisas, en esta tesis, se propone el concepto de un SM de segunda generación basado en EC, que integra Flexible FIR como módulo de predicción de electricidad ejecutándose en el dispositivo y un agente EC con capacidad para el trading de energía producida localmente. Dicho agente ejecuta un novedoso mecanismo basado en incentivos, llamado NRG-X-Change que utiliza una nueva moneda digital descentralizada para el intercambio de energía, llamada NRGcoin.Postprint (published version

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated

    Energy Management of Prosumer Communities

    Get PDF
    The penetration of distributed generation, energy storages and smart loads has resulted in the emergence of prosumers: entities capable of adjusting their electricity production and consumption in order to meet environmental goals and to participate profitably in the available electricity markets. Significant untapped potential remains in the exploitation and coordination of small and medium-sized distributed energy resources. However, such resources usually have a primary purpose, which imposes constraints on the exploitation of the resource; for example, the primary purpose of an electric vehicle battery is for driving, so the battery could be used as temporary storage for excess photovoltaic energy only if the vehicle is available for driving when the owner expects it to be. The aggregation of several distributed energy resources is a solution for coping with the unavailability of one resource. Solutions are needed for managing the electricity production and consumption characteristics of diverse distributed energy resources in order to obtain prosumers with more generic capabilities and services for electricity production, storage, and consumption. This collection of articles studies such prosumers and the emergence of prosumer communities. Demand response-capable smart loads, battery storages and photovoltaic generation resources are forecasted and optimized to ensure energy-efficient and, in some cases, profitable operation of the resources

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock

    Get PDF
    The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the transition from smart buildings towards smart neighbourhoods, which are considered critical urban development units. To support the interplay of smart solutions between buildings and neighbourhoods, this study aimed to collect and review all the smart solutions presented in existing scientific articles, the technical literature, and realised European projects. These solutions were classified into two main sections, buildings and neighbourhoods, which were investigated through five domains: building-energy-related uses, renewable energy sources, water, waste, and open space management. The quantitative outcomes demonstrated the potential benefits of implementing smart solutions in areas ranging from buildings to neighbourhoods. Moreover, this research concluded that the true enhancement of energy conservation goes beyond the building’s energy components and can be genuinely achieved by integrating intelligent neighbourhood elements owing to their strong interdependencies. Future research should assess the effectiveness of these solutions in resource conservation

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models
    corecore