839 research outputs found

    Trustee: A Trust Management System for Fog-enabled Cyber Physical Systems

    Get PDF
    In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, badmouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment. Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and guarantee a dependable Fog-CPS system

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Off-Street Vehicular Fog for Catering Applications in 5G/B5G: A Trust-based Task Mapping Solution and Open Research Issues

    Get PDF
    One of the key enablers in serving the applications requiring stringent latency in 5G networks is fog computing as it is situated closer to the end users. With the technological advancement of vehicles’ on-board units, their computing capabilities are becoming robust, and considering the underutilization of the off-street vehicles, we envision that the off-street vehicles can be an enormously useful computational source for the fog computing. Additionally, clustering the vehicles would be advantageous in order to improve the service availability. As the vehicles become highly connected, trust is needed especially in distributed environments. However, vehicles are made from different manufacturers, and have different platforms, security mechanisms, and varying parking duration. These lead to the unpredictable behavior of the vehicles where quantifying trust value of vehicles would be difficult. A trust-based solution is necessary for task mapping as a task has a set of properties including expected time to complete, and trust requirements that need to be met. However, the existing metrics used for trust evaluation in the vehicular fog computing such as velocity and direction are not applicable in the off-street vehicle fog environments. In this paper, we propose a framework for quantifying the trust value of off-street vehicle fog computing facilities in 5G networks and forming logical clusters of vehicles based on the trust values. This allows tasks to be shared with multiple vehicles in the same cluster that meets the tasks’ trust requirements. Further, we propose a novel task mapping algorithm to increase the vehicle resource utilization and meet the desired trust requirements while maintaining imposed latency requirements of 5G applications. Results obtained using iFogSim simulator demonstrate that the proposed solution increases vehicle resource utilization and reduces task drop noticeably. This paper presents open research issues pertaining to the study to lead..

    A threat based approach to computational offloading for collaborative cruise control

    Get PDF
    The interaction between discrete components of Internet of Things (IoT) and Intelligent Transportation Systems (ITS) is vital for a collaborative system. The secure and reliable use of Cruise Control (CC) with Cloud and Edge Cloud to achieve complete autonomy for a vehicle is a key component and a major challenge for ITS. This research unravels the complications that arise when Adaptive Cruise Control (ACC) is incorporated into a collaborative environment. It mainly answers the question of where to securely compute Collaborative Cruise Control’s (CCC) data in a connected environment. To address this, the paper initially reviews previous research in the domain of Vehicular Cloud, ITS architecture, related threat modelling approaches, and secure implementations of ACC. An overview application model for CCC is developed for performing a threat analysis with the purpose of investigating the reasons why a vehicle suffers collision. Through the use of interviews, the research analyses and suggests the location of computational data by creating a taxonomy between the Edge Cloud, Cloud and the On-board Unit (OBU) while validating the model

    Security in Vehicles With IoT by Prioritization Rules, Vehicle Certificates, and Trust Management

    Full text link
    [EN] The Internet of Vehicles (IoV) provides new opportunities for the coordination of vehicles for enhancing safety and transportation performance. Vehicles can be coordinated for avoiding collisions by communicating their positions when near to each other, in which the information flow is indexed by their geographical positions or the ones in road maps. Vehicles can also be coordinated to ameliorate traffic jams by sharing their locations and destinations. Vehicles can apply optimization algorithms to reduce the overuse of certain streets without excessively enlarging the paths. In this way, traveling time can be reduced. However, IoV also brings security challenges, such as keeping safe from virtual hijacking. In particular, vehicles should detect and isolate the hijacked vehicles ignoring their communications. The current work presents a technique for enhancing security by applying certain prioritization rules, using digital certificates, and applying trust and reputation policies for detecting hijacked vehicles. We tested the proposed approach with a novel agent-based simulator about security in Internet of Things (IoT) for vehicle-to-vehicle communications. The experiments focused on the scenario of avoidance of collisions with hijacked vehicles misinforming other vehicles. The results showed that the current approach increased the average speed of vehicles with a 64.2% when these are giving way to other vehicles in a crossing by means of IoT.This work was supported by Harvard University (stay funded by T49_17R), University of Zaragoza (JIUZ-2017-TEC-03), Foundation Bancaria Ibercaja, Foundation CAI (IT1/18), University Foundation Antonio Gargallo (call 2017), and "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" (TIN2017-84802-C2-1-P).García-Magariño, I.; Sendra, S.; Lacuesta, R.; Lloret, J. (2019). Security in Vehicles With IoT by Prioritization Rules, Vehicle Certificates, and Trust Management. IEEE Internet of Things. 6(4):5927-5934. https://doi.org/10.1109/JIOT.2018.2871255S592759346
    • …
    corecore