27,579 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Wav2code: Restore Clean Speech Representations via Codebook Lookup for Noise-Robust ASR

    Full text link
    Automatic speech recognition (ASR) has gained a remarkable success thanks to recent advances of deep learning, but it usually degrades significantly under real-world noisy conditions. Recent works introduce speech enhancement (SE) as front-end to improve speech quality, which is proved effective but may not be optimal for downstream ASR due to speech distortion problem. Based on that, latest works combine SE and currently popular self-supervised learning (SSL) to alleviate distortion and improve noise robustness. Despite the effectiveness, the speech distortion caused by conventional SE still cannot be completely eliminated. In this paper, we propose a self-supervised framework named Wav2code to implement a generalized SE without distortions for noise-robust ASR. First, in pre-training stage the clean speech representations from SSL model are sent to lookup a discrete codebook via nearest-neighbor feature matching, the resulted code sequence are then exploited to reconstruct the original clean representations, in order to store them in codebook as prior. Second, during finetuning we propose a Transformer-based code predictor to accurately predict clean codes by modeling the global dependency of input noisy representations, which enables discovery and restoration of high-quality clean representations without distortions. Furthermore, we propose an interactive feature fusion network to combine original noisy and the restored clean representations to consider both fidelity and quality, resulting in even more informative features for downstream ASR. Finally, experiments on both synthetic and real noisy datasets demonstrate that Wav2code can solve the speech distortion and improve ASR performance under various noisy conditions, resulting in stronger robustness.Comment: 12 pages, 7 figures, Submitted to IEEE/ACM TASL

    Sign Language Translation from Instructional Videos

    Full text link
    The advances in automatic sign language translation (SLT) to spoken languages have been mostly benchmarked with datasets of limited size and restricted domains. Our work advances the state of the art by providing the first baseline results on How2Sign, a large and broad dataset. We train a Transformer over I3D video features, using the reduced BLEU as a reference metric for validation, instead of the widely used BLEU score. We report a result of 8.03 on the BLEU score, and publish the first open-source implementation of its kind to promote further advances.Comment: Paper accepted at WiCV @CVPR2

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    A Benchmark Framework for Data Compression Techniques

    Get PDF
    Lightweight data compression is frequently applied in main memory database systems to improve query performance. The data processed by such systems is highly diverse. Moreover, there is a high number of existing lightweight compression techniques. Therefore, choosing the optimal technique for a given dataset is non-trivial. Existing approaches are based on simple rules, which do not suffice for such a complex decision. In contrast, our vision is a cost-based approach. However, this requires a detailed cost model, which can only be obtained from a systematic benchmarking of many compression algorithms on many different datasets. A naïve benchmark evaluates every algorithm under consideration separately. This yields many redundant steps and is thus inefficient. We propose an efficient and extensible benchmark framework for compression techniques. Given an ensemble of algorithms, it minimizes the overall run time of the evaluation. We experimentally show that our approach outperforms the naïve approach

    How European Fans in Training (EuroFIT), a lifestyle change program for men delivered in football clubs, achieved its effect: a mixed methods process evaluation embedded in a randomised controlled trial

    Get PDF
    Background A randomised trial of European Fans in Training (EuroFIT), a 12-week healthy lifestyle program delivered in 15 professional football clubs in the Netherlands, Norway, Portugal, and the United Kingdom, successfully increased physical activity and improved diet but did not reduce sedentary time. To guide future implementation, this paper investigates how those effects were achieved. We ask: 1) how was EuroFIT implemented? 2) what were the processes through which outcomes were achieved? Methods We analysed qualitative data implementation notes, observations of 29 of 180 weekly EuroFIT deliveries, semi-structured interviews with 16 coaches and 15 club representatives, and 30 focus group discussions with participants (15 post-program and 15 after 12 months). We descriptively analysed quantitative data on recruitment, attendance at sessions and logs of use of the technologies and survey data on the views of participants at baseline, post program and after 12 months. We used a triangulation protocol to investigate agreement between data from difference sources, organised around meeting 15 objectives within the two research questions. Results We successfully recruited clubs, coaches and men to EuroFIT though the draw of the football club seemed stronger in the UK and Portugal. Advertising that emphasized getting fitter, club-based deliveries, and not ‘standing out’ worked and attendance and fidelity were good, so that coaches in all countries were able to deliver EuroFIT flexibly as intended. Coaches in all 15 clubs facilitated the use of behaviour change techniques and interaction between men, which together enhanced motivation. Participants found it harder to change sedentary time than physical activity and diet. Fitting changes into daily routines, planning for setbacks and recognising the personal benefit of behaviour change were important to maintain changes. Bespoke technologies were valued, but technological hitches frustrated participants. Conclusion EuroFIT was delivered as planned by trained club coaches working flexibly in all countries. It worked as expected to attract men and support initiation and maintenance of changes in physical activity and diet but the use of bespoke, unstable, technologies was frustrating. Future deliveries should eliminate the focus on sedentary time and should use only proven technologies to support self-monitoring and social interaction

    Loop Closure Detection Based on Object-level Spatial Layout and Semantic Consistency

    Full text link
    Visual simultaneous localization and mapping (SLAM) systems face challenges in detecting loop closure under the circumstance of large viewpoint changes. In this paper, we present an object-based loop closure detection method based on the spatial layout and semanic consistency of the 3D scene graph. Firstly, we propose an object-level data association approach based on the semantic information from semantic labels, intersection over union (IoU), object color, and object embedding. Subsequently, multi-view bundle adjustment with the associated objects is utilized to jointly optimize the poses of objects and cameras. We represent the refined objects as a 3D spatial graph with semantics and topology. Then, we propose a graph matching approach to select correspondence objects based on the structure layout and semantic property similarity of vertices' neighbors. Finally, we jointly optimize camera trajectories and object poses in an object-level pose graph optimization, which results in a globally consistent map. Experimental results demonstrate that our proposed data association approach can construct more accurate 3D semantic maps, and our loop closure method is more robust than point-based and object-based methods in circumstances with large viewpoint changes
    • …
    corecore