60,240 research outputs found

    Mediating between AI and highly specialized users

    Get PDF
    We report part of the design experience gained in X-Media, a system for knowledge management and sharing. Consolidated techniques of interaction design (scenario-based design) had to be revisited to capture the richness and complexity of intelligent interactive systems. We show that the design of intelligent systems requires methodologies (faceted scenarios) that support the investigation of intelligent features and usability factors simultaneously. Interaction designers become mediators between intelligent technology and users, and have to facilitate reciprocal understanding

    Constraint capture and maintenance in engineering design

    Get PDF
    The Designers' Workbench is a system, developed by the Advanced Knowledge Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design as well as with the company's design rule book(s). In the principal application discussed here, the evolving design is described against a jet engine ontology. Design rules are expressed as constraints over the domain ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, it is necessary to understand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application conditions” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion between constraints and suggesting appropriate refinements. The proposed methodology provides immediate benefits to the designers and hence should encourage them to input the application conditions (rationales)

    A pollen identification expert system ; an application of expert system techniques to biological identification : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science Massey University

    Get PDF
    The application of expert systems techniques to biological identification has been investigated and a system developed which assists a user to identify and count air-borne pollen grains. The present system uses a modified taxonomic data matrix as the structure for the knowledge base. This allows domain experts to easily assess and modify the knowledge using a familiar data structure. The data structure can be easily converted to rules or a simple frame-based structure if required for other applications. A method of ranking the importance of characters for identifying each taxon has been developed which assists the system to quickly narrow an identification by rejecting or accepting candidate taxa. This method is very similar to that used by domain experts

    A Semantic-Based Information Management System to Support Innovative Product Design

    Get PDF
    International competition and the rapidly global economy, unified by improved communication and transportation, offer to the consumers an enormous choice of goods and services. The result is that companies now require quality, value, time to market and innovation to be successful in order to win the increasing competition. In the engineering sector this is traduced in need of optimization of the design process and in maximization of re-use of data and knowledge already existing in the company. The “SIMI-Pro” (Semantic Information Management system for Innovative Product design) system addresses specific deficiencies in the conceptual phase of product design when knowledge management, if applied, is often sectorial. Its main contribution is in allowing easy, fast and centralized collection of data from multiple sources and in supporting the retrieval and re-use of a wide range of data that will help stylists and engineers shortening the production cycle. SIMI-Pro will be one of the first prototypes to base its information management and its knowledge sharing system on process ontology and it will demonstrate how the use of centralized network systems, coupled with Semantic Web technologies, can improve inter-working activities and interdisciplinary knowledge sharing

    ConEditor+: Capture and Maintenance of Constraints in Engineering Design

    No full text
    The Designers' Workbench is a system, developed to support designers in large organizations, such as Rolls-Royce, by making sure that the design is consistent with the specification for the particular design as well as with the company’s design rule book(s). Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a tool, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. The tool allows the user to combine selected entities from the domain ontology with keywords and operators of a constraint language to form a constraint expression. Further, we hypothesize that to apply constraints appropriately, it is necessary to understand the context in which each constraint is applicable. We refer to this as "application conditions". We show that an explicit representation of application conditions, in a machine interpretable format, along with the constraints and the domain ontology can be used to support the verification and maintenance of constraints

    Tracing the Scenarios in Scenario-Based Product Design: a study to support scenario generation

    Get PDF
    Scenario-based design originates from the human-computer interaction and\ud software engineering disciplines, and continues to be adapted for product development. Product development differs from software development in the former’s more varied context of use, broader characteristics of users and more tangible solutions. The possible use of scenarios in product design is therefore broader and more challenging. Existing design methods that involve scenarios can be employed in many different stages of the product design process. However, there is no proficient overview that discusses a\ud scenario-based product design process in its full extent. The purposes of creating scenarios and the evolution of scenarios from their original design data are often not obvious, although the results from using scenarios are clearly visible. Therefore, this paper proposes to classify possible scenario uses with their purpose, characteristics and supporting design methods. The classification makes explicit different types of scenarios and their relation to one another. Furthermore, novel scenario uses can be referred or added to the classification to develop it in parallel with the scenario-based design\ud practice. Eventually, a scenario-based product design process could take inspiration for creating scenarios from the classification because it provides detailed characteristics of the scenario

    A reflective characterisation of occasional user

    Get PDF
    This work revisits established user classifications and aims to characterise a historically unspecified user category, the Occasional User (OU). Three user categories, novice, intermediate and expert, have dominated the work of user interface (UI) designers, researchers and educators for decades. These categories were created to conceptualise user's needs, strategies and goals around the 80s. Since then, UI paradigm shifts, such as direct manipulation and touch, along with other advances in technology, gave new access to people with little computer knowledge. This fact produced a diversification of the existing user categories not observed in the literature review of traditional classification of users. The findings of this work include a new characterisation of the occasional user, distinguished by user's uncertainty of repetitive use of an interface and little knowledge about its functioning. In addition, the specification of the OU, together with principles and recommendations will help UI community to informatively design for users without requiring a prospective use and previous knowledge of the UI. The OU is an essential type of user to apply user-centred design approach to understand the interaction with technology as universal, accessible and transparent for the user, independently of accumulated experience and technological era that users live in

    Tracking decision-making during architectural design

    Get PDF
    There is a powerful cocktail of circumstances governing the way decisions are made during the architectural design process of a building project. There is considerable potential for misunderstandings, inappropriate changes, change which give rise to unforeseen difficulties, decisions which are not notified to all interested parties, and many other similar problems. The paper presents research conducted within the frame of the EPSRC funded ADS project aiming at addressing the problems linked with the evolution and changing environment of project information to support better decision-making. The paper presents the conceptual framework as well as the software environment that has been developed to support decision-making during building projects, and reports on work carried out on the application of the approach to the architectural design stage. This decision-tracking environment has been evaluated and validated by professionals and practitioners from industry using several instruments as described in the paper

    Highly focused document retrieval in aerospace engineering : user interaction design and evaluation

    Get PDF
    Purpose – This paper seeks to describe the preliminary studies (on both users and data), the design and evaluation of the K-Search system for searching legacy documents in aerospace engineering. Real-world reports of jet engine maintenance challenge the current indexing practice, while real users’ tasks require retrieving the information in the proper context. K-Search is currently in use in Rolls-Royce plc and has evolved to include other tools for knowledge capture and management. Design/methodology/approach – Semantic Web techniques have been used to automatically extract information from the reports while maintaining the original context, allowing a more focused retrieval than with more traditional techniques. The paper combines semantic search with classical information retrieval to increase search effectiveness. An innovative user interface has been designed to take advantage of this hybrid search technique. The interface is designed to allow a flexible and personal approach to searching legacy data. Findings – The user evaluation showed that the system is effective and well received by users. It also shows that different people look at the same data in different ways and make different use of the same system depending on their individual needs, influenced by their job profile and personal attitude. Research limitations/implications – This study focuses on a specific case of an enterprise working in aerospace engineering. Although the findings are likely to be shared with other engineering domains (e.g. mechanical, electronic), the study does not expand the evaluation to different settings. Originality/value – The study shows how real context of use can provide new and unexpected challenges to researchers and how effective solutions can then be adopted and used in organizations.</p

    Analysis and control of complex collaborative design systems

    Get PDF
    This paper presents a novel method for modelling the complexity of collaborative design systems based on its analysis and proposes a solution to reducing complexity and improving performance of such systems. The interaction and interfacing properties among many components of a complex design system are analysed from different viewpoints and then a complexity model for collaborative design is established accordingly. In order to simplify complexity and improve performance of collaborative design, a general solution of decomposing a whole system into sub-systems and using unified interface mechanism between them has been proposed. This proposed solution has been tested with a case study. It has been shown that the proposed solution is meaningful and practical
    • …
    corecore