3 research outputs found

    Some aspects of the efficient use of multiprocessor control systems

    Get PDF
    Computer technology, particularly at the circuit level, is fast approaching its physical limitations. As future needs for greater power from computing systems grows, increases in circuit switching speed (and thus instruction speed) will be unable to match these requirements. Greater power can also be obtained by incorporating several processing units into a single system. This ability to increase the performance of a system by the addition of processing units is one of the major advantages of multiprocessor systems. Four major characteristics of multiprocessor systems have been identified (28) which demonstrate their advantage. These are:- Throughput Flexibility Availability Reliability The additional throughput obtained from a multiprocessor has been mentioned above.. This increase in the power of the system can be obtained in a modular fashion with extra processors being added as greater processing needs arise. The addition of extra processors also has (in general) the desirable advantage of giving a smoother cost - performance curve ( 63). Flexibility is obtained from the increased ability to construct a system matching the user 'requirements at a given time without placing restrictions upon future expansion. With multiprocessor systems; the potential also exists of making greater use of the resources within the system. Availability and reliability are inter-related. Increased availability is achieved, in a well designed system, by ensuring that processing capabilities can be provided to the user even if one (or more) of the processing units has failed. The service provided, however, will probably be degraded due to the reduction in processing capacity. Increased reliability is obtained by the ability of the processing units to compensate for the failure of one of their number. This recovery may involve complex software checks and a consequent decrease in available power even when all the units are functioning

    The Problem of Mutual Exclusion: A New Distributed Solution

    Get PDF
    In both centralized and distributed systems, processes cooperate and compete with each other to access the system resources. Some of these resources must be used exclusively. It is then required that only one process access the shared resource at a given time. This is referred to as the problem of mutual exclusion. Several synchronization mechanisms have been proposed to solve this problem. In this thesis, an effort has been made to compile most of the existing mutual exclusion solutions for both shared memory and message-passing based systems. A new distributed algorithm, which uses a dynamic information structure, is presented to solve the problem of mutual exclusion. It is proved to be free from both deadlock and starvation. This solution is shown to be economical in terms of the number of message exchanges required per critical section execution. Procedures for recovery from both site and link failures are also given

    Semantics of communicating parallel processes.

    Get PDF
    Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.Bibliography: leaves 187-189.Ph.D
    corecore