877 research outputs found

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Investigations of collaborative design environments: A framework for real-time collaborative 3D CAD

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This research investigates computer-based collaborative design environments, in particular issues of real-time collaborative 3D CAD. The thesis first presents a broad perspective of collaborative design environments with a preliminary case study of team design activities in a conventional and a computer mediated setting. This study identifies the impact and the feasibility of computer support for collaborative design and suggests four kinds of essential technologies for a successful collaborative design environment: information-sharing systems, synchronous and asynchronous co- working tools, project management systems, and communication systems. A new conceptual framework for a real-time collaborative 3D design tool, Shared Stage, is proposed based upon the preliminary study. The Shared Stage is defined as a shared 3D design workspace aiming to smoothly incorporate shared 3D workspaces into existing individual 3D workspaces. The addition of a Shared Stage allows collaborating designers to interact in real-time and to have a dynamic and interactive exchange of intermediate 3D design data. The acceptability of collaborative features is maximised by maintaining consistency of the user interface between 3D CAD systems. The framework is subsequently implemented as a software prototype using a new software development environment, customised by integrating related real-time and 3D graphic software development tools. Two main components of the Shared Stage module in the prototype, the Synchronised Stage View (SSV) and the Data Structure Diagram (DSD), provide essential collaborative features for real-time collaborative 3D CAD. These features include synchronised shared 3D representation, dynamic data exchange and awareness support in 3D workspaces. The software prototype is subsequently evaluated to examine the usefulness and usability. A range of quantitative and qualitative methods is used to evaluate the impact of the Shared Stage. The results, including the analysis of collaborative interactions and user perception, illustrate that the Shared Stage is a feasible and valuable addition for real-time collaborative 3D CAD. This research identifies the issues to be addressed for collaborative design environments and also provides a new framework and development strategy of a novel real-time collaborative 3D CAD system. The framework is successfully demonstrated through prototype implementation and an analytical usability evaluation.Financial support from the Department and from the UK government through the Overseas Research Studentship Awards

    Computer-Supported Collaborative Production

    Get PDF
    This paper proposes the concept of collaborative production as a focus of concern within the general area of collaborative work. We position the concept with respect to McGrath's framework for small group dynamics and the more familiar collaboration processes of awareness, coordination, and communication (McGrath 1991). After reviewing research issues and computer-based support for these interacting aspects of collaboration, we turn to a discussion of implications for how to design improved support for collaborative production. We illustrate both the challenges of collaborative production and our design implications with a collaborative map-updating scenario drawn from the work domain of geographical information systems

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    Frameworks for enhancing temporal interface behaviour through software architectural design

    Get PDF
    The work reported in this thesis is concerned with understanding aspects of temporal behaviour. A large part of the thesis is based on analytical studies of temporal properties and interface and architectural concerns. The main areas covered include: i. analysing long-term human processes and the impact of interruptions and delays ii. investigating how infrastructures can be designed to support synchronous fast pace activity iii.design of the Getting-to-Know (GtK) experimental notification server The work is motivated by the failure of many collaborative systems to effectively manage the temporal behaviour at the interface level, as they often assume that the interaction is taking place over fast, reliable local area networks. However, the Web has challenged this assumption and users are faced with frequent network-related delays. The nature of cooperative work increases the importance of timing issues. Collaborative users require both rapid feedback of their own actions and timely feedthrough of other actions. Although it may appear that software architectures are about the internals of system design and not a necessary concern for the user interface, internal details do show up at the surface in non-functional aspects, such as timing. The focus of this work is on understanding the behavioural aspects and how they are influenced by the infrastructure. The thesis has contributed to several areas of research: (a)the study of long-term work processes generated a trigger analysis technique for task decomposition in HCI (b)the analysis of architectures was later applied to investigate architectural options for mobile interfaces (c)the framework for notification servers commenced a design vocabulary in CSCW for the implementation of notification services, with the aim of improving design (d)the impedance matching framework facilitate both goal-directed feedthrough and awareness In particular, (c) and (d) have been exercised in the development of the GtK separable notification server
    corecore