11 research outputs found

    A survey of an introduction to fault diagnosis algorithms

    Get PDF
    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included

    Ultra Reliable Computing Systems

    Get PDF
    For high security and safety applications as well as general purpose applications, it is necessary to have ultra reliable computing systems. This dissertation describes our system of self-testable and self-repairable digital devices, especially, EPLDs (Electrically Programmable Logic Devices). In addition to significantly improving the reliability of digital systems, our self-healing and re-configurable system design with added repair capability can also provide higher yields, lower testing costs, and faster time-to-market for the semiconductor industry. The digital system in our approach is composed of blocks, which realize combinational and sequential circuits using GALs (Generic Array Logic Devices). We describe three techniques for fault-locating and fault-repairing in these devices. The methodology we used for evaluation of these methods and a comparison with devices that have no self-repair capability was simulation of the self-repair algorithms. Our simulations show that the lifetime for a GAL-based EPLD that uses our multiple self-repairing methods is longer than the lifetime of a GAL-based EPLD that uses a single self-repair method or no self-repair method. Specifically, our work demonstrates that the lifetime of a GAL can be increased by adding extra columns in the AND array of a GAL and extra output ORs in a GAL. It also gives information on how many extra columns and extra ORs a GAL needs and which self-repairing method should be used to guarantee a given lifetime. Thus, we can estimate an ideal point, where the maximum reliability can be reached with the minimum cost

    Investigations into the feasibility of an on-line test methodology

    Get PDF
    This thesis aims to understand how information coding and the protocol that it supports can affect the characteristics of electronic circuits. More specifically, it investigates an on-line test methodology called IFIS (If it Fails It Stops) and its impact on the design, implementation and subsequent characteristics of circuits intended for application specific lC (ASIC) technology. The first study investigates the influences of information coding and protocol on the characteristics of IFIS systems. The second study investigates methods of circuit design applicable to IFIS cells and identifies the· technique possessing the characteristics most suitable for on-line testing. The third study investigates the characteristics of a 'real-life' commercial UART re-engineered using the techniques resulting from the previous two studies. The final study investigates the effects of the halting properties endowed by the protocol on failure diagnosis within IFIS systems. The outcome of this work is an identification and characterisation of the factors that influence behaviour, implementation costs and the ability to test and diagnose IFIS designs

    The implementation and applications of multiple-valued logic

    Get PDF
    Multiple-Valued Logic (MVL) takes two major forms. Multiple-valued circuits can implement the logic directly by using multiple-valued signals, or the logic can be implemented indirectly with binary circuits, by using more than one binary signal to represent a single multiple-valued signal. Techniques such as carry-save addition can be viewed as indirectly implemented MVL. Both direct and indirect techniques have been shown in the past to provide advantages over conventional arithmetic and logic techniques in algorithms required widely in computing for applications such as image and signal processing. It is possible to implement basic MVL building blocks at the transistor level. However, these circuits are difficult to design due to their non binary nature. In the design stage they are more like analogue circuits than binary circuits. Current integrated circuit technologies are biased towards binary circuitry. However, in spite of this, there is potential for power and area savings from MVL circuits, especially in technologies such as BiCMOS. This thesis shows that the use of voltage mode MVL will, in general not provide bandwidth increases on circuit buses because the buses become slower as the number of signal levels increases. Current mode MVL circuits however do have potential to reduce power and area requirements of arithmetic circuitry. The design of transistor level circuits is investigated in terms of a modern production technology. A novel methodology for the design of current mode MVL circuits is developed. The methodology is based upon the novel concept of the use of non-linear current encoding of signals, providing the opportunity for the efficient design of many previously unimplemented circuits in current mode MVL. This methodology is used to design a useful set of basic MVL building blocks, and fabrication results are reported. The creation of libraries of MVL circuits is also discussed. The CORDIC algorithm for two dimensional vector rotation is examined in detail as an example for indirect MVL implementation. The algorithm is extended to a set of three dimensional vector rotators using conventional arithmetic, redundant radix four arithmetic, and Taylor's series expansions. These algorithms can be used for two dimensional vector rotations in which no scale factor corrections are needed. The new algorithms are compared in terms of basic VLSI criteria against previously reported algorithms. A pipelined version of the redundant arithmetic algorithm is floorplanned and partially laid out to give indications of wiring overheads, and layout densities. An indirectly implemented MVL algorithm such as the CORDIC algorithm described in this thesis would clearly benefit from direct implementation in MVL

    Techniques for the realization of ultra- reliable spaceborne computer Final report

    Get PDF
    Bibliography and new techniques for use of error correction and redundancy to improve reliability of spaceborne computer

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc

    Towards application of thermal infrared imaging in medical diagnosis: protocols and investigations

    Get PDF
    This thesis ‘Thermal Infrared Imaging: Advancement for Clinical Applications’ documents a series of clinical and laboratory investigations into: development and application of protocols for objective acquisition and processing of clinical TIRI image data, characterisation of human tissue emissivity within clinically-relevant regimes, and use of thermal infrared imaging to determine the depth of subcutaneous heat sources. This work was supported by the Australian Defence Science & Technology Organisation, Western Australian Department of Health, and Flir Systems
    corecore