216 research outputs found

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    On Constructive Connectives and Systems

    Full text link
    Canonical inference rules and canonical systems are defined in the framework of non-strict single-conclusion sequent systems, in which the succeedents of sequents can be empty. Important properties of this framework are investigated, and a general non-deterministic Kripke-style semantics is provided. This general semantics is then used to provide a constructive (and very natural), sufficient and necessary coherence criterion for the validity of the strong cut-elimination theorem in such a system. These results suggest new syntactic and semantic characterizations of basic constructive connectives

    Carnap's problem for intuitionistic propositional logic

    Full text link
    We show that intuitionistic propositional logic is \emph{Carnap categorical}: the only interpretation of the connectives consistent with the intuitionistic consequence relation is the standard interpretation. This holds relative to the most well-known semantics with respect to which intuitionistic logic is sound and complete; among them Kripke semantics, Beth semantics, Dragalin semantics, and topological semantics. It also holds for algebraic semantics, although categoricity in that case is different in kind from categoricity relative to possible worlds style semantics.Comment: Keywords: intuitionistic logic, Carnap's problem, nuclear semantics, algebraic semantics, logical constants, consequence relations, categoricity. Versions: 3rd version has minor additions, and correction of an error in 2nd version (not in 1st version

    Logical structure of constructive set theories

    Get PDF
    • …
    corecore