722 research outputs found

    About least-squares type approach to address direct and controllability problems

    Get PDF
    - We discuss the approximation of distributed null controls for partial differential equations. The main purpose is to determine an approximation of controls that drives the solution from a prescribed initial state at the initial time to the zero target at a prescribed final time. As a non trivial example, we mainly focus on the Stokes system for which the existence of square-integrable controls have been obtained in [Fursikov \& Imanuvilov, Controllability of Evolution Equations, 1996]) via Carleman type estimates. We introduce a least-squares formulation of the controllability problem, and we show that it allows the construction of strong convergent sequences of functions toward null controls for the Stokes system. The approach consists first in introducing a class of functions satisfying a priori the boundary conditions in space and time-in particular the null controllability condition at time T-, and then finding among this class one element satisfying the system. This second step is done by minimizing a quadratic functional, among the admissible corrector functions of the Stokes system. We also discuss briefly the direct problem for the steady Navier-Stokes system. The method does not make use of any duality arguments and therefore avoid the ill-posedness of dual methods, when parabolic type equation are considered

    Fast global null controllability for a viscous Burgers' equation despite the presence of a boundary layer

    Get PDF
    In this work, we are interested in the small time global null controllability for the viscous Burgers' equation y_t - y_xx + y y_x = u(t) on the line segment [0,1]. The second-hand side is a scalar control playing a role similar to that of a pressure. We set y(t,1) = 0 and restrict ourselves to using only two controls (namely the interior one u(t) and the boundary one y(t,0)). In this setting, we show that small time global null controllability still holds by taking advantage of both hyperbolic and parabolic behaviors of our system. We use the Cole-Hopf transform and Fourier series to derive precise estimates for the creation and the dissipation of a boundary layer

    Numerical controllability of the wave equation through primal methods and Carleman estimates

    Get PDF
    This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute an approximation of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not use in this work duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null controls a functional involving weighted integrals of the state and of the control. The optimality conditions show that both the optimal control and the associated state are expressed in terms of a new variable, the solution of a fourth-order elliptic problem defined in the space-time domain. We first prove that, for some specific weights determined by the global Carleman inequalities for the wave equation, this problem is well-posed. Then, in the framework of the finite element method, we introduce a family of finite-dimensional approximate control problems and we prove a strong convergence result. Numerical experiments confirm the analysis. We complete our study with several comments

    On the null-controllability of the heat equation in unbounded domains

    Get PDF
    We make two remarks about the null-controllability of the heat equation with Dirichlet condition in unbounded domains. Firstly, we give a geometric necessary condition (for interior null-controllability in the Euclidean setting)which implies that one can not go infinitely far away from the control region without tending to the boundary (if any), but also applies when the distance to the control region is bounded. The proof builds on heat kernel estimates. Secondly, we describe a class of null-controllable heat equations on unbounded product domains. Elementary examples include an infinite strip in the plane controlled from one boundary and an infinite rod controlled from an internal infinite rod. The proof combines earlier results on compact manifolds with a new lemma saying that the null-controllability of an abstract control system and its null-controllability cost are not changed by taking its tensor product with a system generated by a non-positive self-adjoint operator.Comment: References [CdMZ01, dTZ00] added, abstract modifie
    • …
    corecore