828 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Method for increasing the energy efficiency of wirelessly networked ambulatory health monitoring devices

    Full text link
    In-home healthcare applications that use wearable devices ordinarily have strict power constraints due to the small size of the battery in the device. The power constraints are a key driver of research to develop new methods for improving the energy efficiency of ambulatory health monitoring devices. The radio-communication components typically consume a large proportion of the available energy in systems such as these. Given that radio transmissions use far more power than on-board processing, it is proposed that energy can be conserved by performing fall detection at the node. The proposed algorithm is intended to be performed at the node and provide a suitable balance between power consumption and detection accuracy. The research and prototype system described in this article focuses on wearable fall detection devices to be used elderly people who are living in non-hospital settings, and discusses considerations arising from the development of a prototype system. The outcomes of the system design and development process are discussed, and conclusions are drawn concerning the potential of the method to improve the energy efficiency of fall detection systems

    A Study on Human Fall Detection Systems: Daily Activity Classification and Sensing Techniques

    Get PDF
    Fall detection for elderly is a major topic as far as assistive technologies are concerned. This is due to the high demand for the products and technologies related to fall detection with the ageing population around the globe. This paper gives a review of previous works on human fall detection devices and a preliminary results from a developing depth sensor based device. The three main approaches used in fall detection devices such as wearable based devices, ambient based devices and vision based devices are identified along with the sensors employed.  The frameworks and algorithms applied in each of the approaches and their uniqueness is also illustrated. After studying the performance and the shortcoming of the available systems a future solution using depth sensor is also proposed with preliminary results

    An analytical comparison of datasets of Real-World and simulated falls intended for the evaluation of wearable fall alerting systems

    Get PDF
    Automatic fall detection is one of the most promising applications of wearables in the field of mobile health. The characterization of the effectiveness of wearable fall detectors is hampered by the inherent difficulty of testing these devices with real-world falls. In fact, practically all the proposals in the literature assess the detection algorithms with ‘scripted’ falls that are simulated in a controlled laboratory environment by a group of volunteers (normally young and healthy participants). Aiming at appraising the adequacy of this method, this work systematically compares the statistical characteristics of the acceleration signals from two databases with real falls and those computed from the simulated falls provided by 18 well-known repositories commonly employed by the related works. The results show noteworthy differences between the dynamics of emulated and real-life falls, which undermines the testing procedures followed to date and forces to rethink the strategies for evaluating wearable fall detectors.Funding for open access charge: Universidad de Málaga / CBUA. This research was funded by FEDER Funds (under grant UMA18-FEDERJA-022), Andalusian Regional Government (-Junta de Andalucía- grant PAIDI P18-RT-1652) and Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tech

    Methods for the real-world evaluation of fall detection technology : a scoping review

    Get PDF
    Falls in older adults present a major growing healthcare challenge and reliable detection of falls is crucial to minimise their consequences. The majority of development and testing has used laboratory simulations. As simulations do not cover the wide range of real-world scenarios performance is poor when retested using real-world data. There has been a move from the use of simulated falls towards the use of real-world data. This review aims to assess the current methods for real-world evaluation of fall detection systems, identify their limitations and propose improved robust methods of evaluation. Twenty-three articles met the inclusion criteria and were assessed with regard to the composition of the datasets, data processing methods and the measures of performance. Real-world tests of fall detection technology are inherently challenging and it is clear the field is in it’s infancy. Most studies used small datasets and studies differed on how to quantify the ability to avoid false alarms and how to identify non-falls, a concept which is virtually impossible to define and standardise. To increase robustness and make results comparable, larger standardised datasets are needed containing data from a range of participant groups. Measures which depend on the definition and identification of non-falls should be avoided. Sensitivity, precision and F-measure emerged as the most suitable robust measures for evaluating the real-world performance of fall detection systems

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    Simple Fall Criteria for MEMS Sensors: Data Analysis and Sensor Concept

    Get PDF
    This paper presents a new and simple fall detection concept based on detailed experimental data of human falling and the activities of daily living (ADLs). Establishing appropriate fall algorithms compatible with MEMS sensors requires detailed data on falls and ADLs that indicate clearly the variations of the kinematics at the possible sensor node location on the human body, such as hip, head, and chest. Currently, there is a lack of data on the exact direction and magnitude of each acceleration component associated with these node locations. This is crucial for MEMS structures, which have inertia elements very close to the substrate and are capacitively biased, and hence, are very sensitive to the direction of motion whether it is toward or away from the substrate. This work presents detailed data of the acceleration components on various locations on the human body during various kinds of falls and ADLs. A two-degree-of-freedom model is used to help interpret the experimental data. An algorithm for fall detection based on MEMS switches is then established. A new sensing concept based on the algorithm is proposed. The concept is based on employing several inertia sensors, which are triggered simultaneously, as electrical switches connected in series, upon receiving a true fall signal. In the case of everyday life activities, some or no switches will be triggered resulting in an open circuit configuration, thereby preventing false positive. Lumped-parameter model is presented for the device and preliminary simulation results are presented illustrating the new device concept
    • …
    corecore